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Abstract. In recent years, there has been significant interest in understanding users’ online
content consumption patterns. But the unstructured, high-dimensional, and dynamic na-
ture of such data makes extracting valuable insights challenging. Here we propose a model
that combines the simplicity of matrix factorization with the flexibility of neural networks
to efficiently extract nonlinear patterns from massive text data collections relevant to con-
sumers’ online consumption patterns. Our model decomposes a user’s content consump-
tion journey into nonlinear user and content factors that are used to model their dynamic
interests. This natural decomposition allows us to summarize each user’s content con-
sumption journey with a dynamic probabilistic weighting over a set of underlying content
attributes. The model is fast to estimate, easy to interpret, and can harness external data
sources as an empirical prior. These advantages make our method well suited to the chal-
lenges posed by modern data sets used by digital marketers. We use our model to under-
stand the dynamic news consumption interests of Boston Globe readers over five years.
Thorough qualitative studies, including a crowdsourced evaluation, highlight our model’s
ability to accurately identify nuanced and coherent consumption patterns. These results
are supported by our model’s superior and robust predictive performance over several
competitive baseline methods.

History:Olivier Toubia served as the senior editor for this article.
Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mksc.2021.

1293.
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1. Introduction
The advent of the internet and digitization of consum-
er activity has provided a golden opportunity for
companies to gather more information about custom-
ers. Digital platforms can use the abundant click-
stream data collected from consumers for a variety of
purposes. For instance, they can track how consumers
interact with their website and accordingly make ad-
justments to improve the user experience to maintain
a sustained level of user engagement. They can also
use consumer data to make product recommendations
(Bodapati 2008), assess the churn probability and cus-
tomer lifetime value (Moe 2003, Moe and Fader 2004),
generate dynamic personalizations (Hauser et al.
2009, Urban et al. 2013), offer customizations (Ansari
and Mela 2003), target prices (Dubé and Misra, 2017),
target advertisements (Goldfarb and Tucker 2011, Per-
lich et al. 2014), and personalize search results (Yoga-
narasimhan 2016). Beyond just its business value

(Martens et al. 2016, Trusov et al. 2016), consumer
data can also be leveraged for public policy ends. The
digital trails left by consumers on social media web-
sites like Twitter can be used to gain insights into their
psychological and physical well-being (Schwartz et al.
2013, Sinnenberg et al. 2017).

It should come as no surprise that consumer infor-
mation is increasingly viewed as an essential strategic
asset for companies. Despite or perhaps because of
the exponential growth in data generation and collec-
tion over the past decade, generating actionable in-
sights from this data faces three main challenges. First,
online clickstreams and other user-generated content
(UGC) often contains significant unstructured infor-
mation that lives in very sparse and high-dimensional
spaces.1 This makes statistical inference using tradi-
tional methods hard. Standard statistical inference
methods typically estimate a parameter for each di-
mension and hence are unable to handle such an
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explosion of parameters efficiently. Second, the dy-
namic nature of these data further aggravates the chal-
lenge posed by sparsity owing to the inherent nonsta-
tionarity of the data-generating process. However, it
is this change in customer interests indicated by the
dynamics of content consumption that is commercially
very valuable to model because it may indicate
purchase intent. Third, modeling user content con-
sumption is an inherently different and more complex
problem than the canonical problem of modeling pur-
chase data commonly encountered in marketing. There
is a finite assortment of products or items that custom-
ers can purchase from, for example, clothes, books,
soap, etc.; however, when it comes to content consump-
tion, users have access to an infinite assortment. For
instance, there are no two online news articles that
are the same. So online content consumption is a
domain where the assortment of products that cus-
tomers can consume is always increasing, and there
is little incentive to repeat a “purchase.” Hence, a
key idea in modeling customers’ content consump-
tion is not to model the actual product, that is, a
specific news article, but instead assume that each
product is composed of a set of latent attributes and
customers choose to consume those. For instance,
those latent attributes can be news topics, such as
sports, politics, business, etc. Despite these chal-
lenges, companies have indeed managed to unlock
some of the enormous potential of textual data. Yet,
it is clear that much remains untapped.

This paper proposes a novel neural matrix factori-
zation (MF) framework for modeling dynamic user in-
terests that addresses the above shortcomings. Our
model refrains from directly modeling the actual con-
tent consumed (e.g., the specific news article or blog
post) for the reasons just described but instead as-
sumes that content is composed of a set of underlying
latent attributes or factors. Each user’s content con-
sumption interests are then derived as a time-varying
convex combination of these latent content factors. In
a nutshell, our model factorizes a user’s content con-
sumption journey into a set of common content factors
shared by all the users and a set of user factors that
define a user-specific dynamic weighting over the
content factors.

Because these user and content factors are estimat-
ed from the sparse and high-dimensional content
that users consume, we develop a novel neural net-
work architecture that allows us to efficiently ex-
tract nonlinear patterns from the content by learning
flexible basis functions. Neural networks have en-
joyed immense success lately in learning flexible ba-
sis functions that adapt to the underlying data, thus
enabling them to model complex nonlinear patterns
in high-dimensional data, such as text (Goodfellow
et al. 2016). However, there is a concern regarding

their “black-box” nature, which led us to combine
neural networks with matrix factorization. The user
and content factors estimated by our model lend in-
terpretability to our results while still preserving the
flexibility of neural networks.

Our approach is efficient to estimate and easily
scales to large data sizes, as it does not involve costly
sampling procedures for model inference. It addresses
the data sparsity issue by embedding the high-
dimensional clickstream data into low-dimensional
projections (also known as embeddings). As we will
see later, these embeddings can be estimated in ad-
vance on an external data source; hence, they act as an
empirical prior and provide a source of statistical effi-
ciency to our estimation approach. Our model handles
dynamics efficiently by incorporating state depen-
dence via a simple recurrent connection, which is
temporally smoothed to provide robust regularized
estimates of users’ evolving interests. In summary,
our model addresses the issues posed by sparsity and
dynamics of large unstructured data sets and further
models user interests over the latent content attributes
as opposed to directly modeling the specific content
item (news article) that was consumed.

We use our approach to model the dynamic news
consumption interests of the The Boston Globe (The
Globe) readers over several years. The latent factors es-
timated by our model are used to predict the content
that users will consume in the future as well as to gen-
erate interpretable trajectories of evolving user inter-
ests. The superior predictive performance of our mod-
el, coupled with the coherence of our latent factors as
validated by crowdsourced user studies, highlights
the potential of our approach as a news categoriza-
tion, recommendation, or user-profiling tool.

The rest of the paper is organized as follows. Next,
we position our paper within the broader marketing
and machine learning literature. Then, in Section 3,
we provide an overview of the empirical setup of our
problem and describe the data. We describe our mod-
el specifications in Section 4. Section 5 describes the
results of our model estimation on content consump-
tion data from the Boston Globe. We discuss manageri-
al implications and provide avenues for future
research in Section 6.

2. Related Work
Our work contributes to several strands of literature.
First, our work contributes to the marketing literature
on modeling users’ online consumption behavior.
One of the earliest works in this area was by Mont-
gomery et al. (2004), who model the users’ online be-
havior by analyzing their path on a major online
bookseller’s website. They build a dynamic multino-
mial probit model to predict purchase conversions.
Hui et al. (2009) considers a hybrid online-offline
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setting where they use data collected via radio-
frequency trackers to analyze in-store purchase con-
versions. This research on path analysis highlights
some of the earliest efforts on using digital traces to
predict managerially relevant decisions but, unlike
this paper, did not model the actual textual content
consumed by the users. More recently, Trusov et al.
(2016) model the textual data consumed by users to
generate user profiles by extending correlated topic
models (CTM)—a variant of latent Dirichlet allocation
(LDA) (Blei et al. 2003). Their approach extends CTM
to incorporate visitation intensity, heterogeneity, and
dynamics and is tailored toward the task of behavioral
ad-targeting. Methodologically, their approach relies
on Markov chain Monte Carlo sampling for model
inference, which makes it slow to estimate and the
results highly sensitive to parameter initialization.
Further, the complexity of their probabilistic model
makes it difficult to incorporate even simple nonli-
nearities in the dependence between the users’ inter-
ests and the text they consume. In contrast to that, our
model is not only fast and efficient to estimate but can
also easily incorporate flexible nonlinearities.

Next, our work contributes to the literature on
modeling evolution of consumers’ preferences and
their sensitivities to various marketing variables. The
most classic work in this area is by Guadagni and Lit-
tle (1983), which models the evolution of brand prefer-
ences using exponential smooths of customer-level
brand-loyalty parameters. Since then, there has been
much follow-up work on modeling the evolution of
brand preferences. More recently, Dew et al. (2020)
have used Gaussian processes to model the dynamics
of consumer preferences. There has also been work on
modeling nonlinear relationships between other mar-
keting variables, for example, advertising and sales
(Bruce (2008) used particle filters). Though this body
of work is methodologically elegant and flexibly
models consumer heterogeneity—a key construct in
marketing—these approaches are computationally in-
efficient and rarely scale to large data sets. Further,
these approaches are more tailored toward modelling
physical products unlike our approach, which models
a digital product with an ever-increasing assort-
ment—news articles.

Our work also contributes to the burgeoning litera-
ture in marketing using machine learning methods for
studying customer interests using various forms of
user-generated content. This literature uses multiple
types of online feedback provided by users, for in-
stance, in the form of consumer reviews, online chats,
or searches to model their interests (Netzer et al. 2012,
Tirunillai and Tellis 2014, Büschken and Allenby 2016,
Liu and Toubia 2018, Timoshenko and Hauser 2019).
Substantively, this work is closest to us in terms of
modeling the latent structure in text. Our work is,

however, different, as it models the consumption of
content as opposed to content generation by users via
reviews, chats, or searches. In terms of methods, our
work is significantly different from any of these ap-
proaches. We propose a novel neural-network-based
matrix factorization approach to model text data. The
neural network component of our model allows us to
incorporate flexible nonlinearities in our model. And
the matrix factorization formulation adds interpret-
ability to our results akin to some of the probabilistic
models mentioned above.

Finally, our work is also related to several matrix
factorization-style models in machine learning, recom-
mender system, and operations research literature. At
a high level, our model performs a similar matrix de-
composition as done by latent semantic analysis (LSA)
(Deerwester et al. 1990), by latent Dirichlet allocation
(Blei et al. 2003)2 for document-term matrices, or by
hierarchical Poisson factorization (Gopalan et al. 2015)
for implicit-feedback data. However, there are several
critical differences, as we discuss in Section 4.4. Our
work also extends some of the recent work on dynam-
ic collaborative filtering (Koren 2009, Xiong et al.
2010) to settings in which the user feedback is not
merely limited to clicks or ratings but also includes
textual content. One of the recent works in the opera-
tions research literature by Farias and Li (2019) also
shares some methodological similarity with our work.
It proposes a fast and efficient novel matrix factoriza-
tion approach for learning user preferences from on-
line activity trails. However, it is different in several
critical aspects than our method. First, Farias and Li
(2019) is not interested in modeling the dynamics of
user preferences; but instead, they model the tradi-
tional consumer funnel of search, browse, and pur-
chase. Second, their approach is suited for products
with a finite assortment, such as online shopping,
unlike news content in which the variety of products
increases continuously. Finally, and most importantly,
their approach doesn’t model nonlinearities in
consumption.

3. Empirical Setting
We model the dynamics of users’ interests in the con-
text of online news. Online news consumption is a
perfect test bed for studying the evolution of user in-
terests as a broad representative base of internet users
consume content online. Further, news consumption
patterns do often change saliently over time. For in-
stance, there has been a substantial increase in interest
in political news after the 2016 U.S. presidential elec-
tion. Similarly, there is an uptick in the consumption
of news articles related to basketball or football during
the playoff season. There are several reasons for these
changes in news consumption patterns. They can
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change owing to customers’ innate individual-level
traits, for example, via self-discovery or learning
about a new topic on the internet. They can also fluc-
tuate because of broad population-level trends, or
they can change because of the variation in the avail-
ability of certain kinds of content in specific periods.

Studying these evolving dominant and niche char-
acterizations of users’ digital personas over a long
time period could provide insights into their equilibri-
um interactions with the news website. Modeling
these news readership dynamics is also crucial from
the perspective of content providers since it presents
them with a plethora of personalization opportunities.
Tapping into users’ fluctuating tastes could allow con-
tent providers to optimize content placement on their
website, for instance, via news categorizations tailored
to a user’s interests. It also opens up opportunities for
personalized news stories through the news website
itself or via a newsletter. Content personalization has
been shown to increase reader engagement and cus-
tomer lifetime value and is, therefore, pivotal from a
business standpoint.

Finally, the digital personas estimated from the dy-
namic readership patterns may be used for user
profiling. User profiles concisely summarize a user’s in-
terests and have numerous digital marketing applica-
tions, including targeting advertisements. The model
we propose in this paper uncovers such user profiles
from raw user consumption data and can allow content
providers to personalize content offerings.

3.1. Data
We use more than five-years’ worth of individual-
level clickstream data from the Boston Globe from
February 1, 2014 to May 13, 2019 to perform our
analysis. Globe3 is one of the 25 largest newspapers
by circulation in the United States. Our data contain
fine-grained information about the users’ online
reading behavior and contain information such as
which articles they read, how much time they spent
reading those articles, and their subscription status.
We further have access to granular demographic
data for the visitors, such as area code, zip code,
device type (mobile or desktop), operating system,
and country.

We perform our analysis at the week level because
news stories typically last for a few days. Also, some
people only read the news on weekends. So, one
might not expect to see interesting dynamics in con-
tent consumption behavior on a day-to-day basis.
Moreover, it is typical for users’ interests to crystallize
over time spans longer than a day. We further restrict
our data set by weeding out infrequent visitors—those
who were active five times or less during our entire
observation period. In other words, every user in our

data set visited the website at least five different times
during our entire observation period from 2014–2019.

Our final data set tracks 500,000 unique visitors
over 276 weeks, leading to a total of 5,610,008
non-zero person-week observations.4 Of the total visi-
tors, about 96.7% were from the United States. Table 1
shows the summary statistics of our data set. As can
be seen, an average user made 1.64 visits to the web-
site each week and read 3.83 articles. Further, an aver-
age user was active in 12.40 weeks out of the entire
276 weeks, with a maximum of 264 and a minimum of
5. The frequency distribution of the number of weeks
that the users were active is shown in Figure 1.

Similar to other e-commerce businesses, Globe also
counts each hit to its website as a unique visit and a
typical visit session lasts for 30 minutes. Hence, a visi-
tor who spent 45 minutes on the site would have two
visits attributed to them. Once a visitor clicks on a giv-
en news story, that article is counted as read. Globe’s
users fall into two categories: subscribers and anony-
mous visitors. Subscribers enjoy unfettered access to
news and can be uniquely identified. Anonymous vis-
itors, on the other hand, are identified via cookies. If
an anonymous visitor accesses the Globe website us-
ing two different browsers, then this visitor would be
counted as two unique users in our data set. We un-
derstand that this is not an ideal scenario, but this is a
shortcoming of all cookie-based digital fingerprinting
schemes.

The textual component of our data set consists of
the headlines of the news stories that the users read
over the entire observation period. We do not use the
actual body of the news story because users often
choose to read an article just based on its headline. So,
the headlines are predictive of users’ content interests
by themselves. Second, we excluded the body of the
news stories because of computational issues, as the
headlines alone contained more than 100 million
words. We processed the news stories using the Natu-
ral Language Toolkit (NLTK) (Bird 2006) by following
a standard text-processing pipeline. We performed to-
kenization, lowercasing, and removal of stop-words.
Our final processed text data set consists of over 100
million tokens (135,861,569) of text with a vocabulary
(the number of unique words) of 85,228. Figure 2 plots
the words in the news stories consumed by users

Table 1. Summary Statistics of the Visitation and Reading
Behavior of the Visitors to the Globe Website

Min. Median Mean Max.

Visits per week 1 1 1.64 626
News articles per week 1 1 3.83 1,400
Number of active weeks 5 8 12.40 264

Note. Our data set consists of only those users who were active in at
least five different weeks during our observation period.
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broken down temporally. As expected, we can see the
major sports and political events dominating con-
sumption, but there is a high degree of heterogeneity
in the nuanced consumption tastes of users.

4. Model
Our model assumes that users have evolving latent
content interests and that they reveal a noisy version
of these interests via the content they consume. So, we
model the content consumed by users on Globe’s
website to infer their dynamic latent propensities for
different types of content. It is accomplished in two
steps. First, we assume that text content is composed
of a set of underlying latent attributes that encapsulate
general aspects of content that garner readers’ interest.
Next, each user’s latent interests are modeled as a
nonlinear time-varying weighting over these latent
content attributes. Finally, we connect the users’ inter-
ests across time to ensure a smooth evolution of their
interests. These smoothed user-interest trajectories are
then used to predict the users’ future content
consumption.

We propose a simple matrix factorization approach
to decompose a user’s content consumption traces
into underlying latent content and user attributes.
These user and content factors estimated by our mod-
el, in turn, lend interpretability to our model. Because
these factors are learned from high-dimensional text
data, we incorporate nonlinearities in these estimated
factors via a novel neural network architecture to fur-
ther boost their predictive ability. Before we delve
into the details of our model, we introduce our nota-
tion and then provide an overview of matrix factoriza-
tion more broadly for modeling content interests.

4.1. Notation
Let’s denote the content consumed by user i in time
period t by the column vector xti ∈ R

p×1. The column
length p represents the vocabulary size or the number
of unique words in our data set. In our case, xti de-
notes the set of words in the headlines read by the
user i at time t. The words are encoded using their
one-hot encodings of size p, so if a word occurs more
than once, the corresponding entry of the xti vector
contains the count of that word. Further, let’s assume
that there are a total of n users and τ is the length of
the observation period. Let’s also assume that each
user’s unique identity is represented by an n dimen-
sional indicator vector ai, that is, a user-specific inter-
cept. So, to summarize, our input data can be repre-
sented as τ slices of a p dimensional column vector xti
concatenated with a n dimensional column vector ai
to generate a p + n dimensional column vector zti(�[xti ; ai]) for each user. Putting it all together and trans-
posing the resulting matrix, our final input data set

consists of τ slices of n × (p+ n) dimensional matrices
{Z}t�1:τ.

4.2. Matrix Factorization for Modeling Users’
Content Interests

Our input data {Z}t�1:τ can be seen as a type of inter-
action data where we observe the interactions of
readers with content over time.5 So a natural gener-
ative model for these data is to assume that each
user i is associated with a K dimensional latent col-
umn vector uti ; similarly, each word in the text j is
generated from a K dimensional latent column vec-
tor vj. This assumption is similar to the assumption
about a word being generated from a K dimensional
topic made by latent Dirichlet allocation (Blei et al.
2003). Next, we want to approximate the data ma-
trix using the user and content factors that we as-
sumed to have generated it as

ztij ≈ v�j u
t
i , (1)

where � indicates matrix transpose. In the approxima-
tion given in Equation (1), only the user factors uti
change over time, whereas the content factors v stay
constant. Doing so permits a more parsimonious mod-
el; furthermore, there is no concrete reason to assume
that the semantic representation of latent content fac-
tors drifts significantly over the observation period.
Finally, the approximation described above can be re-
cast as an optimization problem using a suitable loss
function L(·) as

(Ut,V) � argmin
Ut,V

L(Zt,V�Ut): (2)

Recommender systems literature has studied this optimi-
zation problem extensively (Mnih and Salakhutdinov

Figure 1. (Color online) Frequency Distribution of User
Activity
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2008, Koren et al. 2009). In that literature, the input data
are usually the ratings, for instance, on a scale of 1–10,
that the users give to items. Typically, these items have a
finite and fixed assortment size, for example, movies or
music, unlike news content that has an ever-growing
assortment.

The optimization problem (Equation (2)) requires
a rank K reconstruction of the data matrix Zt at each
time step. We know that for squared-error loss
function ||Zt −V�Ut||22, the best such reconstruction
is provided by the top K eigenvectors of Zt (Eckart
and Young 1936). So, one can solve this optimization
problem by computing the singular value decompo-
sition of the data matrix or it can be solved via
iterative projection methods (Seung and Lee 2001,
Mairal et al. 2010). Alternatively, one can formulate
an equivalent probabilistic version of this optimiza-
tion problem. The probabilistic formulation models
the observed data via a conditional Gaussian distri-
bution and places Gaussian priors on both the user
and content factor matrices, similar to (Mnih and

Salakhutdinov 2008):

p(Zt|Ut,V,σ2) �∏n

i�1

∏p+n

j�1
N (ztij|v�j uti ,σ2),

p(U|σ2u) �
∏n

i�1
N (uti |0,σ2u),

p(V|σ2v) �
∏p+n

j�1
N (vj|0,σ2v):

It turns out that maximizing the log-posterior of the
above probabilistic model with the hyperparameters
(i.e., the observation noise variance (σ2) and prior var-
iances (σ2u,σ

2
v)) kept fixed is equivalent to minimizing

the sum-of-squared-errors objective function with
quadratic regularization terms shown in Equation (3):

(Ut,V) � argmin
Ut,V

∑n

i�1

∑p+n

j�1
||ztij − v�j u

t
i ||22 +λU

∑n

i�1
||uti ||22

+λV
∑p+n

j�1
||vj||22, (3)

Figure 2. (Color online) Plot Showing the Prevalence ofWords in the News Stories Consumed by Users in Each 52-Week (One
Year) Period Starting February 2014

Note. Larger font size indicates the higher prevalence of those terms in users’ consumption patterns.
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where λU � σ2=σ2U and λV � σ2=σ2V. Much of the rec-
ommender systems literature has approached this
problem in this fashion and optimized the biconvex
objective function presented in Equation (3), for in-
stance, using alternating least squares (Koren et al.
2009). This general matrix factorization framework is
a bedrock of modern collaborative filtering ap-
proaches to recommendation in academia and indus-
try. A variant of the above model also won the famous
$1 million Netflix Prize.6

In this paper, we extend this basic matrix factoriza-
tion framework along three main dimensions to mod-
el the users’ dynamic content consumption interests.

1. We incorporate nonlinearities into the user-
specific latent factors. These nonlinearities are parame-
terized by a novel neural network architecture
designed for the problem of modeling dynamics of
content consumption. Neural networks have enjoyed
immense success in the recent past in extracting pat-
terns from high-dimensional data by learning adaptive
basis functions (Goodfellow et al. 2016). Hence, our
neural network allows us to flexibly model the nonlin-
ear dependence between the high-dimensional textual
content and the users’ latent interests.

2. We introduce state dependence between the latent
user factors as uti�f(ut−1i ). It is an important element of
our model, as prior research has shown strong evi-
dence of habit formation in news consumption. We
model this evolution of user tastes also via our neural
network architecture. We connect the current and past
estimates of the latent states of the user interests and
then smooth them via exponential smoothing.

3. We adapt the general matrix factorization frame-
work presented in Equation (3) to the task of text
modeling. MF has been used extensively in generating
recommendations via collaborative filtering based on
rating data. News articles are, however, inherently dif-
ferent than the “items” typically considered in the rec-
ommender systems literature, as their assortment in-
creases rapidly over time. That said, our approach does
have connections to some of the text-modeling frame-
works that loosely fit into the MF framework. We dis-
cuss those connections in detail in Section 4.4.

In light of these, Equation (3) changes as

{U}t�1:τ,V,Θ
[ ] � argmin

{U}t�1:τ,V,Θ

∑n

i�1

∑p+n

j�1

∑τ

t�1
||ztij − g(v�j uti ;Θ)||22

+ λU
∑n

i�1

∑τ

t�1
||uti ||22 + λV

∑p+n

j�1
||vj||22

such that uti�f (ut−1i ) ∀ t � 1 : τ,

(4)

where g(·) encodes the neural network parameterized
by Θ and f (·) represents the functional form of the

state-dependence between the user interests. Next, we
describe our model in detail.

4.3. Neural Network Architecture
Our model is described by Equation (4). We operational-
ize the nonlinearities and the state dependence via a nov-
el neural network architecture. Neural nets have enjoyed
remarkable success in the last decade in terms of provid-
ing state-of-the-art performances in several tough prob-
lems involving high-dimensional data sets, such as those
arising in speech, text, images, and video (Murphy 2012,
Goodfellow et al. 2016). Further, neural nets allow us to
flexibly incorporate families of nonlinearities, which is
harder to accomplish with splines, kernel methods, or
other nonlinear modeling techniques. A comprehensive
introduction to neural nets is beyond the scope of this
paper. We instead refer the reader to a popular textbook
on this subject by Goodfellow et al. (2016).

The key behind the success of neural nets is their
ability to learn superior data representations, and cen-
tral to the notion of representation learning is the con-
cept of an embedding (Bengio et al. 2003, 2013). An
embedding is essentially a dense low-dimensional
representational summary of a high-dimensional in-
put, such as text or an image. In our case, the embed-
ding ew of a word w is a map ew : Rp → R

d, where p, as
defined earlier, is the high-dimensional one-hot repre-
sentation of a word and d is the embedding dimen-
sionality with p� d. Recall that p is the number of
unique words in our data. The one-hot encoding for a
word, then, is just a vector of size p with all zeros and
just a one at the lexicographically sorted index of that
word. The embedding dimensionality is the only new
notation that we need to operationalize our model.
The various modeling steps are described below.

4.3.1. Embedding the Input Data. As the first step, we
embed the high-dimensional input data {xti , ai} into
d-dimensional spaces separately. This low-dimensional
projection is performed via matrices Ex and Ea, respective-
ly. The embedding matrix Ea is a model parameter and is
estimated from the data. On the other hand, the matrix
Ex, which embeds the words in the news headline, is fixed
and, hence, not estimated from the data. The embedding
dimensionality d is a hyperparameter of our model.

Embeddings capture generic properties of the high-
dimensional input that they are projecting down to a
low-dimensional space. So, the word embedding matrix
Ex encodes semantic information about the words that
they are projecting down. Words with similar meanings
are, therefore, closer in the embedding space (Mikolov
et al. 2013b, Dhillon et al. 2015). Hence, we can estimate
Ex on an independent data set that is much larger than
the size of our data set, for instance, the entire Wikipedia
or all the English newswire. There are several such word
embeddings trained on more massive data sets than
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ours that are publicly available, for example, word2vec
(Mikolov et al. 2013a, b), GloVe (Pennington et al. 2014),
and Eigenwords (Dhillon et al. 2011, 2012, 2015), among
others. Using these “pretrained” word embeddings
serves the purpose of a valuable empirical prior. Howev-
er, no such pretrained embeddings are available for ai be-
cause the identity of users in our data set is unique to
our data set and is not a general property that can be
transferred from other data sets. Hence, the embeddings
Ea need to be estimated from the data. The low-
dimensional embedding of a given user i can be simply
obtained as Eaai.

In terms of the operationalization of pretrained
word embeddings, we obtain the pretrained Ex matrix
as just described and fix it. Hence, these word embed-
dings are not estimated along with the rest of the
model. The embedding of a specific word w can then
be retrieved as Exw. The content consumed by users,
xti , however, consists of more than a single word, for
example, the headline “GE Unveils Striking New
Headquarters for Fort Point.” We obtain the embed-
dings for the entire sequence by retrieving the embed-
dings for individual words in the headline as Exxti and
then averaging them.

4.3.2. Estimating a Nonlinear Hidden State for Each
User. A user’s time-varying consumption and unique
identifier ai contribute to the user’s latent state ℓti that
represents the user’s content interests at a given time
step. So, once we have projected the inputs {xti ,ai} to a
d-dimensional space, we combine them nonlinearly to
get the hidden state of that user at a given time step as
shown in Equation (5),

ℓti � σ1(Wℓ · [Exxti ;Eaai]), (5)

where “;” indicates row-wise concatenation. The non-
linear activation function is denoted by σ1(·). We
choose a rectified linear unit (ReLU) as the nonlinear-
ity for the sake of its simplicity and because of its low-
er susceptibility to the vanishing gradient problem
(Glorot et al. 2011). A ReLU activation function is op-
erationalized as σ1(x) �max(0,x). The ReLU nonli-
nearity is parameterized by the matrix Wℓ, which is a
model parameter that is estimated from the data. The
hidden state ℓti obtained after the nonlinear transfor-
mation is a d-dimensional column vector.

4.3.3. Incorporating Dynamics by Combining a User’s
Current and Previous Hidden States. Because the
users’ interests evolve, their final hidden state uti de-
pends not only on the current inputs but also on the
hidden state from the previous time step. We allow uti
to depend nonlinearly on ℓti and ut−1i as

uti � σ2(Wuℓ
t
i +Wrut−1i ): (6)

The nonlinear transformation is parameterized by the
matrices Wu and Wr, both of which are estimated
from the data. The output dimensionality of the user
factor uti is K, where K can be thought of as latent con-
tent attributes. The role of K in our model is analogous
to the number of topics in a topic model, such as latent
Dirichlet allocation (Blei et al. 2003). It is a model hy-
perparameter, and we show the robustness of our re-
sults to different choices of K.

Because the user factor uti captures K different tastes
of the user at that time step, it is natural that they rep-
resent probabilities and hence sum-to-one. Hence, we
employ the softmax function as the nonlinearity σ2(·)
here. Softmax normalizes real-valued numbers into
probabilities over the K different content interests. It is
operationalized as σ2(z)i � exp(zi)=∑k

j�1exp(zj), for i �
1, : : : ,K and z � (z1, : : : , zk).

One would expect that a user’s interests evolve
gradually and smoothly. For instance, it is uncharac-
teristic for a user to be consuming content with emo-
tional valence up to a certain time and then never en-
gaging with it again. So one issue with our
operationalization shown in Equation (6) is that it
doesn’t ensure that user interest trajectories are
smooth, and it turns out empirically that indeed they
are choppy. We borrow an idea from the time-series
modeling and brand choice modeling (Guadagni and
Little 1983) literature to address this problem. We use
exponential smooths of the hidden state vectors to ob-
tain user factors that evolve smoothly. The degree of
smoothing is controlled by the hyperparameter α. In
light of this modification, Equation (6) changes as

uti � α · σ2(Wuℓ
t
i +Wrut−1i )[ ] + (1 − α) · ut−1i : (7)

4.3.4. Combining the User and Content Factors. The
user factor uti provides a probability distribution
over a user’s interest in the K latent content attrib-
utes at time t.7 The temporal snapshots of the user
factor at different times give us the dynamics of
their interests. The content factor, denoted by the
matrix V, represents the words that constitute each
of the K content attributes. V projects each of the K
latent content attributes to a d-dimensional space,
the same low-dimensional space as the word embed-
dings. Hence, one can find the words that constitute
each of the K latent content attributes by finding the
nearest neighbors of each row of the V matrix from
the word embedding matrix Ex. Finally, the user and
content factors are combined to provide a noisy
rank-K and d-dimensional reconstruction of the original
input xti as

rti � V�uti : (8)
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The reconstruction vector rti can be seen as a projection
of the K-dimensional user factor uti onto the d-dimen-
sional embedding space.

4.3.5. Minimizing the Loss Function. The content and
user latent factors condense the content consumption
of all the users into (1) K content attributes shared by
all the users encoded into the matrix V and (2) a user’s
dynamic weighting over those K content attributes,
which is embedded into the vector uti . The vector rti
obtained by multiplying V and uti provides a recon-
struction of the input data as it lies in the same
d-dimensional space.

We define our loss function to minimize the dis-
crepancy between the input xti and its reconstruction
rti . Our loss function can be seen as similar to the one
used by principal component analysis (Murphy 2012)
or autoencoders (Goodfellow et al. 2016), as these
methods also minimize reconstruction error. Trivially,
our model can be seen as an encoder-decoder architec-
ture also, where uti encodes the inputs into a fixed-
length vector and the decoder then decodes it into
some destination format, for example, a translated
sentence in a new language (Bahdanau et al. 2014).
However, the crucial difference is that, in our case, the
source and destination are the same as we’re recon-
structing the input itself at each time step. Hence, our
model is a recurrent autoencoder.

We optimize a squared-error loss function for the
sake of simplicity and because of some recent results
showing its superior performance on various text,
image, and speech tasks (Hui and Belkin 2020). The
optimization problem is shown in Equation (9). A key
observation that can be made is that fixing the word
embeddings Ex and making them nontrainable is im-
portant for making our model work.

[{U}t�1:τ,V] � argmin
Ut�1:τ,V

∑n

i�1

∑τ

t�1
||Exxti − rti ||22 (9)

To summarize, the various details of our model are
shown in Figure 3.

4.4. Connection to Other Machine
Learning Models

Our model essentially estimates a dynamic nonlinear
low-rank approximation of the input content con-
sumed by users. In the process of doing so, it uncovers
latent content attributes as well as each user’s evolv-
ing tastes over those content attributes.

Our approach bears connections to several machine
learning and natural language processing models that
estimate similar low-rank projections for text data.
One of the oldest such methods is latent semantic
analysis (Deerwester et al. 1990). It approximates a
document-term matrix, that is, a matrix containing

counts of words in each document, with low-rank
document and term factor matrices. These estimated
factors can then be used, for instance, for information
retrieval by computing the similarity between differ-
ent documents. Our approach is also related to LDA
(Blei et al. 2003), a popular Bayesian generative model
of text. The β and θ topic-word and document-topic
probability matrices that LDA estimates can be seen
as analogous to our V and Ut matrices, respectively. A
recently proposed probabilistic model, hierarchical
Poisson factorization (Gopalan et al. 2015), also shares
some similarities with our model. It also estimates
low-dimensional user preference and item attribute
factors, though, for modeling implicit feedback data,
such as movie ratings.

All these models share similarities with our proposed
approach. They were proposed in a similar spirit as our
model—to uncover latent low-dimensional structure
from high-dimensional text data. However, our ap-
proach is different than these methods in (1) modeling
nonlinearities via a novel neural network architecture,
(2) modeling dynamics, and (3) incorporating data-
driven empirical priors via “externally estimated”
word embeddings. That said, there are a few probabil-
istic text models that can model dynamics also, for
example, Blei and Lafferty (2006), Koren (2009), and
Charlin et al. (2015). However, their methodological ap-
proach is significantly different than ours.

4.5. Model Estimation and Optimization
Neural net models are estimated just like other statis-
tical models. An estimate of model error (or loss) is
computed over the entire data set. Next, we calculate
the gradient of the model parameters with respect to
the loss and then move parameters in the direction of
the gradient. Because of the nonlinearities, the likeli-
hood function of neural nets, in general, is nonconvex.
Nonconvex objective functions may get stuck in a lo-
cal minimum or a saddle point and hence can result in
getting different parameter estimates based on differ-
ent parameter initialization. Therefore, one needs to
be careful in the optimization of neural network
parameters.

The PyTorch deep learning library was used to esti-
mate our model (Paszke et al. 2019). We used Adam
to optimize our model parameters (Kingma and Ba
2014), and the learning rate was set at 0.001. The train-
ing was performed for 30 epochs when the conver-
gence criteria were met. The model hyperparameters
K and α were selected according to the results on a
validation set. The values that were finally selected
were K � 30 and α � 0:5. The word embedding matrix
Ex was initialized with pretrained GloVe embeddings.
We pretrained the GloVe embeddings (dimensionality
d � 300) on the Globe data set.8 The attribute embed-
dings Ea as well as other trainable model parameters
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were all initialized uniformly at random, as is stan-
dard practice. The model estimation was performed
on a Nvidia RTX 2080 Ti GPU server with 512 GB of
RAM. The model estimation took around 30 hours to

converge. Our model has recurrent parts due to tem-
poral dependence between the hidden states. That
contributed to the slow model training, as it is hard to
parallelize recurrent computations.

Figure 3. (Color online) Neural Network Architecture for Modeling Dynamic User Interests
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5. Results
This section showcases the empirical performance of
our approach in capturing the nuances of users’ evolv-
ing content consumption tastes. We divide our results
into four parts. First, we visually present the trajecto-
ries of users’ interests Ut as well as the latent content
attributes V estimated by our model. Then, we per-
form a crowdsourced study to assess the coherence of
the content attributes determined by our model. Next,
we turn to quantitative evaluations that highlight the
predictive power of the representations learned by
our model. Finally, we test the robustness of our find-
ings in several ways, including performing ablation
studies to uncover the relative contribution of differ-
ent aspects of our model.

5.1. Visualizing Trajectories of User Interests
Our model was estimated as described in the previous
section. The matrix V uncovers the latent content at-
tributes. For each of its K rows, we found the words
associated with that content attribute by computing
the nearest neighbors of each row of V from the word
embedding matrix Ex. A set of handpicked content at-
tributes and associated words are shown in Figure 4.

It is easy to see that the content attributes loosely
correspond to intuitive categories of user interests.
The topical content of the attributes discovered by our
model is more fine grained than the typical section-
based categorization of content by newspaper web-
sites. For instance, several topics relate to sports con-
tent, for example, basketball, baseball, and football,
and several that correspond to lifestyles, such as

vacation and entertainment. Further, there are some
subtle tastes brought to the forefront by our model,
for example, content on social issues, crime, or content
related to local (Metro Boston) politics. It is worth
emphasizing that the set of content attributes shown
in Figure 4 is handpicked; like any other mixed-
membership text model, our model also results in
some less interpretable clusters. For example, one
such cluster comprises the words {house, white,
game, thrones, trump, visit, harvard}, which superim-
poses politics and entertainment content attributes.
The full list of all the content attributes is in the online
appendix.

As a natural next step, we investigate the evolving
tastes of specific segments of users. We focus on three
managerially relevant customer personas. Those three
customer personas are9

• Locals and Expats: These users are mostly interested
in local New England news, for example, local politics,
holidays, or sports.

• Sports Fanatics: As the name suggests, these users
predominantly consume sports content.

• Political Junkies: These users mostly consume politi-
cal content.

For each of these three personas, we classify the cor-
responding trajectories also into two categories based
on temporal trends:

• Stable Interests: User interests are stable if the rela-
tive ranking of their interests does not change over the
entire observation period.

• Evolving Interests: User interests are assumed to
evolve if the relative ranking of their interests changes

Figure 4. (Color online) The Constituent Words of a Select Few Content Attributes

Notes. (1) The full list of all the content attributes is in the online appendix. (2) Our model outputs a clustered collection of words. The actual
names of the content attributes were assignedmanually by three research assistants. Whenever there was a conflict, we used the majority label.
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over the observation period. Further, there are two pos-
sibilities. This change in relative rankings of interests
could be persistent or a user could have vacillating in-
terests with fluctuating relative rankings.

Figure 5 shows the dynamic interests of sample
users with the three personas that were just described.
These users predominantly consumed content on
sports, politics, or local affairs, which can be confirmed
from the attribute weights estimated by our model.
These were stable user interests, as their ranking did
not change during our observation period. Our defini-
tion of stable user interests concerns the ranking of the
interest weights as opposed to the actual weights. For
example, the Political Junkie sample user shown in
Figure 5 had an increase in politics-related content
around the time of the 2016 U.S. presidential election.
However, because that user always consumed high
amounts of political content, this increased attention
did not impact the rankings of the user’s latent inter-
ests, which stayed steady. Similarly, the Sports Fa-
natic user had a decrease in his or her interest in
baseball, but this user still consumed a high amount
of such content relatively. Hence, though, the actual
interest weights could shift over time; but that even
might not indicate a significant departure from the
status quo as the relative rankings are stable.

Along similar lines, Figure 6 shows two users with
evolving interests. As opposed to stable interests, we
assume users have evolving interests when there is a
change in the ranking of their interests. This change
can further occur in two different ways. There could
be a persistent change in the rankings, which could

potentially be due to a permanent change in the
underlying content preferences. The left panel in
Figure 6 shows a user with persistently evolved inter-
ests. Starting around January 2017, the user’s interest
in politics waned and the user started paying more at-
tention to football news.

The user interests could also vacillate, leading to a
temporary change in rankings. The right panel in Fig-
ure 6 shows such a user. As can be seen, the sample
user’s interest in vacation-related content waxes and
wanes over time, perhaps because of the user’s season-
al interest in such content or because of a fluctuation in
the user’s underlying preferences. Needless to say, this
distinction between stable and evolving interests is a
valuable piece of information for a marketing analyst
who is monitoring this user and wants to intervene.

To summarize, our approach uncovers both evident
and nuanced trends in user interests. The classification
of interests into stable and evolving captures a critical
distinction in the underlying user preferences and can
be leveraged by marketers to tailor their messages to
the user. Depending on the context, evolving user inter-
ests could, for instance, indicate purchase intent or they
might suggest the need for a personalized nudge.10

5.2. Crowdsourced Evaluation of
Content Attributes

To further solidify the qualitative evidence presented
by the trajectories of user interests, we perform a
crowdsourced evaluation. The trajectories that we vi-
sualized appear to capture nuanced user tastes but
lack impartial human assessment. So, we use Amazon

Figure 5. (Color online) (Stable User Interests) The Plots Show the Dynamics of the Top-Five Interests (Based onWeights from
theUt Matrix) of Sample Users with the Different Personas

Notes. These interests are classified as stable as the relative ranking of these interests does not change. The interests are listed at the top of the fig-
ure; the words corresponding to each interest can be found in Figure 5. The y-axis plots the weighting on various interests based on theUt matrix.
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Mechanical Turk (MTurk) to perform a human evalu-
ation of the coherence of the content attributes esti-
mated by our model.

To assess the efficacy of the content attribute matrix
V in capturing coherent and meaningful concepts, we
perform the word intrusion task as specified by Chang
et al. (2009). In the word intrusion task, human sub-
jects have to identify the intruderwords from the list of
words belonging to a topic or a content attribute in our
case. For example, in the list of words {celtics, bruins,
canadiens, rangers, apple, giants}, most people identify
apple as the intruder word because the other words
make sense together (they are names of sports teams).

We follow the evaluation strategy outlined by Chang
et al. (2009) firmly. For each content attribute repre-
sented by a row of the V matrix, we choose five words
that are closest to it in terms of cosine-similarity. Next,
we choose an intruder word that has a lower similarity
to a given row of the Kmatrix but has a higher similari-
ty to another row of K. Finally, all six words are ran-
domly shuffled and presented to human subjects. The
human judgments are evaluated using the model preci-
sion metric defined in Equation (10), where k indexes
the content attributes (the row index of V), and S is the
total number of human subjects. The variable ik,s de-
notes the intruder word defined by a human subject for
a particular content attribute; wk is the correct intruder
word that was used for that content attribute.

Mean Precisionk�
∑S

s�1

1(ik,s� wk)
S

(10)

We collected judgments from five different MTurk
workers. We asked each worker to detect the intruder
word for each content attribute, that is, a word intru-
sion task for each row of K. Because this is a qualita-
tive analysis of the coherence of the content attributes
estimated by our model, we evaluated our model
with four different dimensionalities of the attribute
matrix, K � {10,30,50,100}. Mean model precision
will be one if all the five workers can find the correct
intruder word and zero if all of them selected the
wrong intruder word. A higher model precision indi-
cates greater coherence of a content attribute because
a higher number of human judges were able to spot
the intruder word easily. The box plot in Figure 7
shows the model precision for our model for various
values of K. As the box plot suggests, our content at-
tributes generally exhibit high model precision and
hence a high-degree of cohesiveness.

5.3. Evaluating the Predictive Quality of the
Estimated Dynamic User Interests

Our model generates trajectories of user interests
based on the content they consume. As we just saw,
they are coherent and unravel nuanced user behaviors
in content consumption. Next, we build on those re-
sults by showcasing the predictive power of these
learned user representations. The user and content
factors estimated by our model together provide a
low-dimensional summarization of a user’s
content consumption profile. Hence, we use the
d-dimensional reconstruction vector rti(� V�uti) output
by our model to assess the predictive power of the

Figure 6. (Color online) (Evolving User Interests) The Plots Show the Dynamics of the Top-Five Interests (Based onWeights
from theUt Matrix) of Sample Users with Evolving Interests

Notes. The interests are listed at the top of the figure; the words corresponding to each interest can be found in Figure 5. The y-axis plots the
weighting on various interests based on theUt matrix.
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representations learned by our model. In particular,
we use rti estimated until t � τ− a, that is, up until a
previous time periods in our observation period to
predict a user’s content consumption in the final τth

time period. The time period τ may not be aligned
across calendar time for all the users, as it is the last
time a user consumed content. Hence, each user has a
potentially different value of τ in calendar time. We
chose not to use a subscript τi, as that adds further
complexity to our notation.

Predicting what a user will read next seems like a
cumbersome task from a statistical modeling perspec-
tive, as the output is a high-dimensional text vector.
There are thousands of unique news articles that can
be read by a user, which makes it a classification
problem with thousands of output classes. Given the
nature of news articles, most of these output classes
appear only a few times in the data set. Hence, we
need to simplify this prediction task into one that can
be solved easily.

We construct two empirical tasks to highlight the
superior predictive quality of the user representations
learned by our model. At the heart of both of these
prediction tasks are the d-dimensional vectors rτ−ai
and cτi . Just to recall, rτ−ai is the user factor estimated
using data from the first τ− a time periods. Because
rτ−ai lies in the same d-dimensional space as the input,
it is also called the reconstruction vector; cτi is the ob-
ject that we want to predict, that is, the d-dimensional
embedding of the content consumed by the user in
the τth time period. We generate the embeddings for

cτi using the pretrained GloVe embeddings via the
same procedure as described in Section 4.3.1 for input
embeddings.

The user factor rτ−ai can be represented as a point in
a d-dimensional space. If it indeed captures the subtle
patterns in a user’s dynamic interests, then one should
expect it to be proximate to the d-dimensional content
embedding cτi . We use this intuition to guide our eval-
uation strategy. As part of our first evaluation, we
find the nearest neighbor (in terms of the cosine simi-
larity) of each user’s representation vector rτ−ai from
the content embeddings. The mean precision is com-
puted as the fraction of users for whom the nearest
neighbor was their own content embedding cτi . More
precisely, our evaluation metric is

Mean Precision �∑
n

i�1

1(NN1(rτ−ai )�cτi )
n

, (11)

where NN1(·) represents the nearest neighbor func-
tion that returns the content embedding that is closest
in terms of cosine similarity to the user factor and n is
the total number of users in our evaluation set. This
metric is also known as “mean precision at K
(MP@K)” in the information retrieval literature.11 In
our case, we only consider one nearest neighbor, so
essentially we are calculating “MP@1.” We also evalu-
ated mean precision for more nearest neighbors, in
particular MP@3, MP@5, and MP@10; the trends in re-
sults were remarkably similar, though the actual
mean precision was higher as the retrieval problem
becomes easier with an increase in the number of
nearest neighbors considered.

Our second evaluation builds on the first one and
captures the proximity of embeddings on a continu-
ous scale instead of an all-or-nothing nearest neighbor
prediction. So, we compute the real-valued similarity
score s(rτ−ai , cτi ) between the d-dimensional user and
content vectors. More precisely, we compute the co-
sine similarity between the vectors. Once again, we
draw on the ability of high-quality representations to
cluster together in the d-dimensional embedding
space.

We split our data set into two parts—training and
validation. The data are shuffled randomly, and the
training/validation splits are constructed with 90%/
10% of users, respectively. We estimate Equation (9)
on the training data set and then tune the model
hyperparameters K, α on the validation data set. The
details of hyperparameter tuning are described in the
next subsection. Because our evaluation involves com-
puting the nearest neighbors and similarity of embed-
dings, which do not have any estimable parameters of
their own, we do not need a separate held-out test set.
Hence, we use the training data itself for the nearest
neighbor retrieval and similarity tasks. All our models

Figure 7. (Color online) CrowdsourcedMeanModel Preci-
sion for Different Number of Attributes
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are estimated on the first τ− a time periods. We only
access the content consumption in τth time-period
while benchmarking the prediction (or retrieval) accu-
racy of the learned representations.

We benchmark the predictive quality of the repre-
sentations learned by our model by comparing its per-
formance against several alternatives. Three out of the
four options that we consider broadly fall into the
class of “topic models.” At a high level, they posit a
data-generating process that assumes the text is gener-
ated by several underlying latent factors called topics.
The fourth baseline that we compare against is a
weighted average of the content consumed by a user
across different newspaper website sections.

1. Latent Dirichlet allocation: LDA is a popular hierar-
chical Bayesian model of text generation (Blei et al.
2003), which has been used in several marketing ana-
lytics applications (Büschken and Allenby 2016, Liu
and Toubia 2018). It describes a data-generating pro-
cess for collections of text data, such as documents
where each document contains a set of words. It as-
sumes that a small number of latent topics generate
each document. And, each word is further created by
one of these topics.

LDA was not proposed for modeling dynamic user
interests, which is the problem that interests us. How-
ever, it can be adapted to model user interests by as-
suming that the total content consumed by each user
{xti}t�1:τ is a document. Then, the topic-word matrix es-
timated by LDA β is analogous to our matrix V, and
the document-topic matrix θ is comparable to the
matrix Ut. For an apples-to-apples comparison with
our approach, we need the equivalent of our
d-dimensional user factor rτ−ai . Once we have that, then
we can easily compute the nearest neighbor and the
similarity score.

It is rather straightforward to generate the equivalent
of rτ−ai for LDA. We use the β matrix to find the top 50
words that have the highest posterior probability for
each topic and then extract their pretrained GloVe em-
beddings. Next these embeddings are averaged over
all the words in a given topic, thereby generating a
d-dimensional vector for each of the K topics. Finally,
we multiply these embeddings with the document-
topic matrix θ to output a d-dimensional user factor
similar to rτ−ai .
We try K � {30, 50, 100,200} for the number of LDA
topics and finally choose K � 50, as it gives the best ac-
curacy on the validation data set. We train LDA for 100
iterations with a collapsed Gibbs sampler. To make as
close a comparison as possible, LDA is also trained on
the content consumed by each user in the first τ− a pe-
riods only.

2. Dynamic topic model (DTM): DTM (Blei and Laff-
erty 2006) is the dynamic version of LDA. It assumes
that the topic mixtures per document remain the same

over time, but topics themselves evolve. In comparison
with our model, it assumes that a user’s weighting
over the content attributes U is static, but the content
attributes V themselves drift over time.
We adopt a similar procedure as defined above for
LDA to generate a d-dimensional user factor for DTM.
We try K � {30,50, 100, 200} for the number of DTM
topics and finally choose K � 30, as it gives the best ac-
curacy on the validation data set. The rest of the estima-
tion procedure for DTM exactly mirrors that of LDA.

3. LDA-Gaussian process dynamic heterogeneity (LDA-
GPDH):Next, we compare our approach against LDA-
GPDH (Dew et al. 2020), which is a flexible approach
for modeling dynamic heterogeneity using Gaussian
processes. It is proposed for modeling the evolution of
product reviews but can be easily adapted tomodel dy-
namic user interests.

Unlike DTM, LDA-GPDH assumes that the topics
are static, but the mixture of topics per document
changes over time. A Gaussian process parameterizes
the fluctuation of a topic from its mean prevalence in a
document. So, similar to our model, LDA-GPDH as-
sumes that a user’s weightings over the different topics
evolve, but the topics themselves remain static. The pa-
rameters νd and βid(t) as presented in Dew et al. (2020),
where d indexes the topics and i indexes the products,
correspond to our matrices V andUt, respectively. Sim-
ilar to LDA and DTM, we map the topic-word proba-
bility distribution of LDA-GPDH to d-dimensional
GloVe embeddings and generate a user factor corre-
sponding to our rτ−ai .

The rest of the estimation and evaluation procedure
is similar to that of LDA and DTM. We tried K �
{15,30,50,100} number of topics and got the best vali-
dation accuracy for K � 15.12

4. Weighted Average of Topical Content: Globe catego-
rizes content on its website into sections, for example,
politics, sports, metro, opinion, business, etc. These
content categorizations are generated manually by the
editorial team. So, a natural baseline for predicting a
user’s future content consumption is the weighted av-
erage of content consumed by them in the past. To be
more precise, we compute the average GloVe embed-
dings of the 50 most frequent words that a user con-
sumed from various sections and then weight those
embeddings by the overall share of content consumed
by the user from each of those sections. We compute
these weighted content embeddings using content
from the first τ− a time periods to generate the equiva-
lent of rτ−ai . The rest of the estimation and evaluation
procedure is the same as for LDA, DTM, and LDA-
GPDH.

Tables 2 and 3 benchmark the performance of vari-
ous models. The results show the superior perfor-
mance of our approach with striking consistency
across different time-horizons of prediction (a � 1, 2,
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3) for both the nearest neighbor retrieval precision
and cosine similarity evaluation metrics.

A bit unsurprisingly, the baseline model, which
uses a weighted average of the existing sections on
the Globe website, performed the worst. It suggests
the benefits of a data-driven categorization of news
stories in being predictive of latent user interests. The
two dynamic models DTM and LDA-GPDH, were the
most competitive baselines, though they still per-
formed significantly worse than our model. The two
critical dimensions along which our model differs
from these baselines are in modeling nonlinearities
via a neural network and in performing exponential
smoothing of the user trajectories. The strong perfor-
mance of our model corroborates similar findings by
the deep learning community (Goodfellow et al. 2016)
of the superiority of neural networks in extracting
nonlinear patterns from large data sets. Also, because
most users’ trajectories are relatively short (Figure 1),
exponential smoothing improves predictive accuracy
by acting as a regularizer.

Our model unpacks users’ complex content
consumption patterns by estimating an interpretable
dynamic probabilistic weighting over a set of key un-
derlying interests. Further, the user representations
learned by our model embed closer to their future
content consumption embedding and hence wield
predictive power. Thus, a firm can use our results to
recommend specific news articles or broad content

topics to the users. In its simplest form, such a recom-
mendation can be made by computing the cosine sim-
ilarity between the reconstruction vector rτ−ai and the
candidate news stories published on a given day cτi
and then recommending the top few items. Alterna-
tively, one can choose items to recommend based on
the nearest neighbors of the user representations rτ−ai .
Such conceptualizations formed the basis of some of
the earliest deployed recommender systems (Sarwar
et al. 2002, Koren et al. 2009). This was partly the rea-
son that we designed our predictive evaluation based
on these metrics.

5.4. Other Important Analyses: Robustness
Tests, Ablation Analyses, and Real-World
Deployment Challenges

Our model makes several design choices, including
the selection of tunable hyperparameters. Further,
several essential modeling details are crucial to get
right for the successful deployment of our model. So,
as a next step, we test the sensitivity of the model per-
formance to these design choices and explain the key
engineering details to aid the scalable deployment of
our model. We divide our analysis into three parts.

5.4.1. Robustness Tests. We check the robustness of
our model to two different hyperparameter choices.
We consider several choices for the number of content
attributes K � {10, 30,50,100} and the amount of

Table 2. Results on the Task of Retrieving the Nearest Neighbor, That Is, MP@1

a � 1 a � 2 a � 3

Method Mean precision Mean precision Mean precision

Weighted average of sections 3.8 2.2 1.4
LDA 10.4 7.8 6.4
LDA-GPDH 12.2 10.7 8.7
DTM 14.9 12.6 10.9
Our approach 17.1 15.6 13.2

Notes. (1) Mean precision represents the fraction of users whose nearest neighbor was retrieved correctly. Please refer to Equation (11). (2) Preci-
sion numbers are multiplied by 100 to standardize them. (3) Table shows training set accuracy. (4) Model hyperparameters were tuned on the
validation data set. The models are estimated on data up until a previous time periods. The prediction is always made on content consumption
in the final τth period.

Table 3. Results Showing Cosine Similarity Between Embeddings of Users and the Content They Consumed

a � 1 a � 2 a � 3

Method Similarity (µ6σ) Similarity (µ6σ) Similarity (µ6σ)

Weighted average of sections 42.9 6 10.6 40.1 6 9.4 38.7 6 9.2
LDA 55.4 6 5.1 52.9 6 4.6 50.1 6 5.4
DTM 64.6 6 2.1 61.2 6 2.9 58.6 6 4.3
LDA-GPDH 62.8 6 3.0 61.0 6 2.4 59.9 6 4.0
Our approach 71.3 6 3.3 69.4 6 3.9 67.0 6 3.6

Notes. (1) Similarity represents the cosine similarity a·b
||a|| ||b||. (2) Similarity numbers are multiplied by 100 to standardize them. (3) Table shows train-

ing set accuracy. (4) Model hyperparameters were tuned on the validation data set. Themodels are estimated on data up until a previous time pe-
riods. The prediction is always made on content consumption in the final τth period.
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exponential smoothing α � {0:10,0:25, 0:50,0:75,0:90}.
We train our model on 90% of the data and compute
the nearest neighbor accuracy on the validation data
(10%). Finally, the best performing hyperparameters
are chosen. The results are shown in Table 4. As can
be seen, averaging over different values of α, the best
value of K is 30 and the best value of α is 0.5 while av-
eraging over different values of K. These hyperpara-
meter values also provide the best held-out accuracy
when used together.

5.4.2. Ablation Analysis. Next, we perform several ab-
lation analyses by unraveling various components of
our model. Essentially, we “turn off” certain parts of
our model and evaluate the predictive ability of the
rest of the model. These ablation studies allow us to
quantify the relative contribution of the multiple de-
sign choices in our model.

• The contribution of nonlinearities: Our model incor-
porates nonlinearities that are parameterized by a neu-
ral network. So, it is natural to benchmark our model’s
performance against a model that does not contain any
nonlinearities. Hence, we take our model as described
in Figure 3 and remove all nonlinearities, such as the
activation functions σ1, σ2 and the associated parame-
ters {Wℓ, Wu, and Wr}. We keep everything else the
same, including the loss function and gradient-based
model training via the Adam optimizer. This modified

model is then used to estimate the predictive quality of
our dynamic user representations via the nearest
neighbor prediction task. Results shown in Table 5 il-
lustrate the contribution of nonlinearities toward the
model performance. As can be seen, a model with no
nonlinearities significantly underperforms the full
model.

• The impact of modeling time dynamics: Modeling the
time dynamics of users’ content consumption is central
to our model. So, an interesting counterfactual to con-
sider is the case when there is no time dimension in our
model. This scenario can be simulated by assuming
that the variable xti (Figure 3) contains the content con-
sumed by each user over the entire observation period.
In our actual model, however, the variable xti contains
only the content consumed during the time-period t.
All other details of our model remain the same as
earlier.
Again, we use this model with no time dimension to
make nearest neighbor prediction. The resulting accu-
racy of the model is shown in Table 5. The results show
a significant decrease in accuracy in the absence of
modeling time dynamics, thereby underscoring the im-
portance of modeling the time dimension and the drift
of users’ content consumption tastes.

• The impact of exponential smoothing: Finally, we
quantify the impact of exponential smoothing in our
model. As described earlier, we perform exponential
smoothing to ensure that the trajectories of users’ inter-
ests evolve smoothly over time. In other words, expo-
nential smoothing can be seen as providing valuable
regularization to our model, which improves its
generalization performance. We remove the exponen-
tial smoothing from our model by setting α � 1 in
Equation (7). The accuracy of the resultingmodel dropped
substantially once again, as can be seen in Table 5.

The various ablation studies paint a coherent picture of
the importance of modeling nonlinearities, time dynamics,
and performing exponential smoothing on model perfor-
mance. Excluding any of these components leads to a sub-
stantial decrease in model accuracy. Among the various
model parts, nonlinearities and time dynamics seem to be
the most crucial elements in terms of providing superior
model performance.

5.4.3. Real-World Deployment Challenges: Scalability,
Transferability, and Cold-Starting New Users. There
are several related challenges involved in the real-
world deployment of our model. The key underlying
issue regards dealing with the arrival of new users.
More precisely, how can we use our estimated model
to generate the consumption trajectories uti for new
users? This can be further divided into two parts. Do
we have consumption traces xti for these users or are
they first-time visitors?

Table 4. Table Showing the Impact of Hyperparameter
Choice on the Validation Set Accuracy

Hyperparameters

Mean nearest neighbor precision

α � 0:10 α � 0:25 α � 0:50 α � 0:75 α � 0:90

K � 10 12.9 14.1 15.2 15.0 13.6
K � 30 12.1 15.8 18.4 16.6 14.4
K � 50 11.2 15.3 17.7 15.2 14.1
K � 100 13.4 16.2 17.5 16.8 14.5

Notes. (1) Mean precision represents the fraction of users whose near-
est neighbor was predicted correctly. Please refer to Equation (11). (2)
Precision numbers are multiplied by 100 to standardize them.

Table 5. Table Showing the Relative Contribution of
Various Components of Our Model

Mean nearest neighbor precision

Ablation a � 1 a � 2 a � 3

No nonlinearities 11.7 8.6 6.5
No time dynamics 13.1 10.3 8.1
No exponential smoothing 15.7 12.9 10.8
Full model (Table 2) 17.1 15.6 13.2

Notes. (1) Mean precision represents the fraction of users whose near-
est neighbor was predicted correctly. Please refer to Equation (11). (2)
Precision numbers are multiplied by 100 to standardize them. Train-
ing set accuracy is reported. The models are estimated on data up un-
til a previous time periods.
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• Use transfer learning to learn representations for users
with consumption traces xti : This challenge arises in two
real-world scenarios faced by any digital marketing an-
alytics firm. First, the model has been estimated on a
fixed set of users and new users arrive. The firm has ac-
cess to the content they consumed xti ; however, estimat-
ing the model every time there is an influx of new users
is impractical. Can we use an already estimated model
to induce the representations for these new users? The
second challenge arises because of computational con-
cerns. The firm has estimated our model on a small but
representative subpopulation of users, so can we trans-
fer the representations learned by this model to the full
population of users? This scenario is also encountered
while estimating the model for generating the results
described in this paper. There are recurrent compo-
nents in our neural net, which makes it hard to parallel-
ize. Hence, we estimated our model on a random sub-
sample of 500,000 users, and we would like to scale it
to our full user-base.

It turns out that there is a simple and efficient solu-
tion to this transfer learning problem. Recall that the
key parameters estimated by our model are {U}t�1:τ
and V, as also shown in Equation (9). Of these parame-
ters, the content factors V are shared by all the users
and can be thought of as learning a common “basis” to
represent the content. Hence, as long as the initial user
subpopulation used to estimate the model is represen-
tative, we can use the estimated V for new users. So,
for a new user s, we only need to estimate their dynam-
ic weighting over the content factors, that is, uts. This
can be done easily by freezing all the estimated param-
eters {Wℓ, Wu, Wr, V, Ex} of our model as shown in Fig-
ure 3, except Ea (initialized randomly) and then feeding
it the consumption traces xts and a user identifier as.
Once again, we estimate this model using Adam via
backpropagation, with the only estimable parameters
being the d-dimensional user embeddings contained in
the matrix Ea. Once the model estimation has finished,
we have an estimate of the new user’s dynamic weight-
ing uts as desired. This trivial estimation can be per-
formed very fast, unlike the full model training, be-
cause we estimate only one set of parameters while
fixing all others. It has the effect of making the optimi-
zation landscape less nonconvex than learning all the
parameters at once. Hence, we can transfer the repre-
sentations learned by our model to new users by incur-
ring only a small computational cost.

• Cold-starting new users with no consumption traces:
Any successful real-world deployment of the model
would also need to cold-start the new users, that is,
learn representations for whom we have no observed
content consumption traces. In this realistic but even
more challenging scenario, we cannot use transfer
learning as described above to estimate new user repre-
sentations. Instead, the only recourse in this scenario is

to use the observable user demographics, such as zip
code, desktop/mobile, age, etc., to find the nearest
neighbors of the new users from among the users for
whom we have already estimated the model. Finally,
the estimated dynamic weighting for the new users can
be a simple average of their neighbors’ weightings,
which can be used to generate an initial set of item rec-
ommendations. Note that throughout this paper, we
have never used the observable user demographics be-
fore, but any digital marketing company has access to
them. And, they will come in handy in generating cold-
start recommendations.

6. Discussion
This paper proposed a neural matrix factorization
method to extract nonlinear patterns from high-
dimensional text data. We used it to model the dy-
namics of users’ content consumption interests. Our
results highlight the superior ability of our model in
capturing nuances in dynamic consumption patterns.
Each user’s estimated interests open a window into
their evolving tastes and can be used to create data-
driven user personas that are predictive of their future
content engagement. These personas or the embed-
dings themselves rti can be used, for instance, to build
user profiles, to recommend news articles, or to create
personalized news categorizations with a few caveats.
In addition to neatly summarizing user interests, the
estimated low-dimensional user profiles also have
high predictive power. Our approach significantly
outperforms a host of competitive baseline methods
in predicting future user engagement.

Methodologically our model represents significant
advances over existing approaches. The dynamic ma-
trix factorization formulation of our method allows us
to decompose a user’s news consumption into a set of
latent content attributes coupled with that user’s dy-
namic weighting over those attributes. Such a natural
decomposition of a customer’s journey aids with the
interpretability of our findings. Further, our neural net
model combines with this simple matrix decomposi-
tion to help us model flexible nonlinear dependence
between the high-dimensional textual content and
users’ latent interests. Hence, our method provides the
best of both worlds. It combines the benefits of flexible
nonlinear neural net modeling and the simplistic inter-
pretation of matrix factorization. Our approach per-
mits this while also seamlessly incorporating temporal
dependence between user interests. Finally, the ability
to incorporate empirical data-driven priors into our
model in the form of pretrained word embeddings es-
timated on external data sources provides a significant
comparative advantage to our model.

To the best of our knowledge, this is the first paper
to propose a novel neural net architecture for a
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relevant marketing problem. Extracting patterns from
high-dimensional text data is a common problem
faced by digital marketers these days. Our paper is
also the first paper to apply matrix factorization style
methods to a digital marketing problem while also
highlighting the simplicity of such methods.

6.1. Managerial Implications
Our model provides an end-to-end customer analytics
framework that can be used by marketing managers
to profile the users, track the health of their customer
base, and design suitable interventions for retaining
them. To that end, our results have important mana-
gerial implications.

6.1.1. Generating User Profiles. The trajectories of la-
tent user interests estimated by our model provide a
concise summary of their often fluctuating and evolv-
ing underlying content preferences. Because these tra-
jectories provide a dynamic weighting over a set of
underlying content attributes, they are also easy to in-
terpret. Further, these user representations are esti-
mated from fine-granular user interactions with the
news content. These considerations make these
representations a perfect candidate for building user
profiles. A user profile summarizes a user’s interests
revealed via the user’s behavioral patterns online and
has numerous digital marketing applications, includ-
ing the targeting of advertisements. The computation-
al efficiency and ease of estimation of our model, cou-
pled with its ability to harness highly predictive
subtle dynamic cues from large data sets, would make
it an excellent choice for industrial deployment.

Above and beyond the utility of user profiles in dig-
ital marketing applications, marketing managers can
also use the trajectories generated by our model for an
initial sniff test to detect anomalous patterns in
individual-level consumption behavior. Any idiosyn-
cratic deviations could be used to trigger a personal-
ized intervention, for instance.

6.1.2. Content Categorization and Recommendation.
Our model estimates two key outputs: the evolving
user interests {U}t�1:τ and the underlying content at-
tributes V. Both of them can be leveraged by digital
media firms to improve their content offerings in a
data-driven fashion. The content factor matrix V,
which captures the latent content attributes, can be,
for instance, used to categorize content on a news
publisher’s website. Typically, this categorization of
news articles into a set of predefined categories or
topics, for example, sports, politics, business, is done
manually by editors. This process could be automated
in a data-driven fashion by using the V matrix to clas-
sify news stories into existing categories and generate
new categories, such as the content on social issues or

content high in emotional valence. A firm can also
adopt a hybrid approach to news categorizations and
refine the editorial classifications based on our model
estimates. Similarly, the temporally smoothed user
factor Ut can be used to generate personalized content
recommendations. The most straightforward such
system can be constructed by finding the news article
embeddings closest in the d-dimensional space to the
user embeddings rti and recommending such stories to
the user.

However, there is a caveat that any manager imple-
menting our suggestions needs to consider. There is
no random variation in the consumption data, so it is
hard to assess users’ responsiveness to any recommen-
dation or categorization performed using our model.
The empirical evaluations in this paper only assess the
predictiveness of the representations learned by our
model. Though, in general, predictive power is corre-
lated with the metrics determining the success of such
recommendation or categorization systems.

6.2. External Validity
In this paper, we proposed a neural matrix factoriza-
tion modeling approach to extract nonlinear patterns
from text data to infer customers’ evolving interests.
We apply our method to model news consumption
data from the Boston Globe’s website. As we saw in
Figure 2, Globe’s news coverage does slant toward the
geographical area it serves. However, our model did
not make any modeling assumptions specifically
tuned to Globe or news consumption more generally.
So, without making any changes, our approach can be
used to model other types of textual data, for instance,
various types of user-generated content, for example,
online reviews, chats, or searches.

Building on this rationale, our method can also be
used to model other types of high-dimensional con-
sumption data. By making a few changes, our ap-
proach can be used to extract nonlinear patterns from
image or video data, for instance. The crucial differ-
ence in inferring dynamic user interests from visual
data would be in the type of input embeddings Ex
used. Input embeddings for image or video data
would need to exploit the spatial proximity13 of the
input data. Once we have visual embeddings, then,
the rest of the modeling can proceed as currently. One
could also imagine using our model to infer consum-
ers’ dynamic interests based on their purchases of su-
permarket items—a common modeling context in
marketing. However, it is unclear if modeling nonli-
nearities in such contexts will give significant
improvements over existing methods, such as logit
models, because the input data already sit in a low-
dimensional space.

This paper models changes in customers’ consump-
tion behavior in online news. In many other
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marketing contexts such as retailing or supermarket
purchases, this is often equivalent or at least assumed
equal to modeling changes in demand-side consumer
interests. However, in our context, a potent supply
side mechanism exists that is consistent with observed
behavior. It is represented by external factors that
change the supply of various kinds of news stories. In
reality, online news consumption behavior is probably
driven by both supply side and demand-side factors.
We do not model the supply side in this paper and in-
stead take the news content as exogenously deter-
mined each period. The question of disentangling
supply and demand is an important one, but it is be-
yond the scope of this paper. The main focus and
hence the contribution of this paper is in extracting
nonlinear patterns from high-dimensional text data
and modeling the associated habit formation in con-
tent consumption. If indeed a marketing application
arises that requires modeling both supply and de-
mand side of news consumption, then our model can
be used as a small module to extract nonlinear
patterns from high-dimensional data inside a larger
economic model. Modeling user behavior itself is
sufficient for many predictive customer analytics
applications.

6.3. Conclusion and Limitations
We are living in the age of an information deluge.
Firms are overwhelming customers with highly intru-
sive advertisements, emails and coupons since they
lack reliable estimates of customer interests. It is part-
ly due to the companies not being able to efficiently
harvest economically significant signals from the copi-
ous swathes of clickstream data and partly due to
their inability to collect relevant data in the first place
(Mela and Moorman 2018). Analytics approaches like
ours can help firms efficiently unravel managerially
relevant customer insights from high-dimensional text
data. And, hence they possess the potential to move
the firms toward their goal of tapping into customers’
minds and increasing the relevance of their messages
and content offerings.

That said, our framework is not without limitations.
First, we model only one kind of customer digital
footprints —news consumption. Future work should
model other kinds of data, for example, online search
history, comments, reviews, and different types of
UGC. Further, it is also a fruitful direction to propose
new neural net models for these data to answer im-
portant marketing and customer analytics questions.
To the best of our knowledge, the use of deep learning
and neural net models in marketing research is still an
underexplored area of study. The significant break-
throughs made in the last decade in the estimation
and scalability of these families of models make a
compelling case to employ them for modeling

customer and firm outcomes from large data sets. Sec-
ond, future work could go beyond the bag-of-words
assumption we made while modeling the textual con-
tent. It could, for instance, use convolutional neural
networks or attention mechanisms to model the rela-
tive importance of different words in the consumed
content. The magnitude of the economic impact of
these methodological choices is an empirical question
and is tough to predict. Third, we only model the de-
mand side and assume that consumers’ consumption
patterns are driven only by their consumption in pre-
vious periods. It is an exciting avenue of future re-
search to model the interaction of content availability
with readers’ consumption interests. We hope our
work will inspire future research to overcome these
limitations in pushing the limits of our understanding
of the dynamics of online content consumption.
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Endnotes
1 By unstructured, we mean the kind of data that does not readily
fit into a standard tabular format, for example, text, image, audio,
and video data. The usual way of encoding such data is via a one-
hot-encoding. For text data, the one-hot encoding represents each
word in English with a sparse vector the size of vocabulary of
English (~300 K) with all zeros, except a one at the location of the
lexicographically sorted index of that word.
2 LDA is not a matrix factorization model. Still, it can loosely be
considered a Bayesian version of LSA.
3 See http://www.bostonglobe.com.
4 Our full data set contained a total of 11,399,021 unique users; how-
ever, because of computational/memory constraints, we randomly
subsampled 500,000 users from the entire data set. We were unable
to estimate any bigger models with the computational resources at
our disposal.
5 More precisely, the input data also contains ai, which does not rep-
resent an interaction but describes user features. These user features
can, though, also be assumed to be generated from the user factor.
6 See https://en.wikipedia.org/wiki/Netflix_Prize.
7 After performing exponential smoothing uti may no longer be a
probability distribution. Thus we scale it to make it sum-to-one after
the smoothing step.
8 We also experimented with the pretrained GloVe embeddings
downloaded from http://nlp.stanford.edu/data/glove.840B.300d.
zip. The performance of both the sets of embeddings was compara-
ble, though the embeddings trained on Globe data were slightly
better because we did not need to deal with the issue of out-of-vo-
cabulary words.
9 It is essential to note that, for instance, locals and expats could also
consume sports and political content; but it is not what they con-
sume predominantly. Predominant user interests are assumed to ac-
count for at least 50% of their interest weights.
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10 The stratification of user interest trajectories into stable and
evolving was developed by us to summarize managerially mean-
ingful dynamics of user interests.
11 See https://en.wikipedia.org/wiki/Evaluation_measures_(infor
mation_retrieval).
12 LDA-GPDHwas estimated using the code provided by Dew et al.
(2020) in personal communication.
13 It has been shown that good visual features exhibit spatial prox-
imity (Goodfellow et al. 2016).
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