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Firstly, we would like to state some lemmas and give some properties of Subsampled Randomized
Hadamard Transform (SRHT), which will be pivotal in proving our theorems for the fixed design
setting.

1 Properties of SRHT

As described in the paper, let H be the scaled Hadamard matrix of size n × n, D be the diagonal
matrix of size n× n with i.i.d. rademacher random variable on the diagonal and let R ∈ nsubs × n
be the subsampling matrix. So, Θ = RHD ∈ nsubs × n is the SRHT matrix. All the norms used in
this paper and supplementary material are `2 norms for a vector and the spectral norm for a matrix
unless specified otherwise. The statement of the lemma is as follows:

Lemma 1. Let X be an n × p (n � p) matrix where X>X = n · Ip. Let Θ be a nsubs × n SRHT
matrix where nsubs is the subsampling size. Then with failure probability at most δ + n

ep ,

‖(ΘX)>ΘX/nsubs −X>X/n‖ ≤

√
c log( 2p

δ )p

nsubs
(1)

Remark 1. The idea and tools for the proof of this lemma come from [1] and [2]. Here we char-
acterize the spectral norm error between the matrix multiplication with and without SRHT as a
function of subsample size nsubs and matrix dimension p.

Before proving Lemma 1 we need to state a few lemmas from random matrix theory. Next Lemma
is Lemma 3.3 in [1].

Lemma 2. (Row norms after Randomized Hadamard Transform) Let V be an n × p matrix with
orthonormal columns. Then HDV is also an n× p matrix with orthonormal columns and

P

(
max

j=1,2...n
‖e>j (HDV)‖ ≥

√
p

n
+

√
8 log(βn)

n

)
≤ 1

β
(2)

Remark 2. In our setting p is reasonably large, though it’s much smaller than n. Let β = ep

n , we
have maxj=1,2...n ‖e>j (HDV)‖ ≤ 4

√
p
n holds with failure probability at most n

ep . In particular,
when log(n)� p the failure probability is almost 0.

Next lemma is Lemma 3.4 in [1] the proof of which comes from the matrix Chernoff bound in [2].

Lemma 3. (Spectral Bounds for Row Sampling). Let W be an n × p matrix with orthonormal
columns. Define M = n ·maxj=1,2...n ‖eTj W‖2. Draw nsubs rows from W without replacement.
Let R ∈ nsubs × n be the matrix corresponding to subsampled rows. Then the smallest and largest
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spectral value of the subsampled matrix RW are bounded by√
(1− δ)nsubs

n
≤ σp(RW) (3)√

(1 + η)nsubs
n

≥ σ1(RW) (4)

with failure probability at most

p ·
(

e−δ

(1− δ)1−δ

)nsubs/M
+ p ·

(
eη

(1 + η)1+η

)nsubs/M
(5)

Lemma 3 can be simplified a lot for our purpose.
Corollary 1. Let W be an n × p matrix with orthonormal columns. Define M = n ·
maxj=1,2...n ‖e>j W‖2. Draw nsubs rows from W without replacement. Let R ∈ nsubs × n be
the matrix corresponding to the subsampled rows. Then the spectral values of the subsampled ma-
trix RW are bounded by √

(1− δ)nsubs
n

≤ σp(RW) (6)√
(1 + δ)nsubs

n
≥ σ1(RW) (7)

with failure probability at most

2p · e
−cδ2nsubs

M (8)

for some fixed positive constant c.

Proof. By the Taylor’s expansion of log(1− δ) and log(1 + δ)

log

(
e−δ

(1− δ)1−δ

)
= −δ − (1− δ) log(1− δ) ≤ −δ2

log

(
eδ

(1 + δ)1+δ

)
= δ − (1 + δ) log(1 + δ) ≤ −δ2/4

replace the e−δ

(1−δ)1−δ and eη

(1+η)1+η term in lemma 2 with e−cδ
2

and e−cη
2

. Set η = δ completes the
proof.

Now we can prove Lemma 1:

Proof. Θ = RHD. Let W = HDX, note that the columns of X/
√
n are orthonormal. Remark 2

shows

max
j=1,2...n

‖e>j W/
√
n‖ ≤ 4

√
p

n
(9)

holds with failure probability n
ep . Let M = 16p = n ·maxj=1,2...n ‖e>j W/

√
n‖2. Assume equation

9 holds, Corollary 1 implies the spectral norm of ΘX/
√
n = RW/

√
n can be bounded by√

(1− ε)nsubs
n

≤ σp(ΘX/
√
n) (10)√

(1 + ε)nsubs
n

≥ σ1(ΘX/
√
n) (11)

with failure probability at most δ where ε =

√
c log( 2p

δ )p

nsubs
. Equations 10, 11 implies that the singular

values of the symmetric matrix (ΘX)>ΘX
n lie between [ (1−ε)nsubs

n , (1+ε)nsubs
n ], or in other words,
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the singular values of the symmetric matrix (ΘX)>ΘX
nsubs

lies between [1 − ε, 1 + ε]. Noticing that
X>X/n is a p × p identity matrix, so Equations 10, 11 directly imply Equation 1. Finally let’s
compute the failure probability, i.e. the probability that the Equations 10, 11 don’t hold. By Lemma
1,

P (Equation 9 fails) ≤ n

ep
(12)

By corollary 1,
P (One of Equations 10, 11 fail|Equation 9 holds) ≤ δ (13)

which directly implies

P (One of Equations 10, 11 fail and Equation 9 holds) ≤ δ (14)

Equations 12, 14 imply

P (One of Equations 10, 11 fail) ≤ P (One of Equations 10, 11 fail and Equation 9 holds)
+P (Equation 9 fails )

≤ n

ep
+ δ

Next two lemmas gives bounds on (ΘX)>Θε for SRHT, where ε is a n× 1 i.i.d. centered gaussian
noise with standard deviation σ.
Lemma 4. Consider a finite sequence of fixed matrices {Bk} with dimension d1× d2, and let {γk}
be a finite sequence of independent standard normal variables. Define parameter

c21 = max{‖
∑
k

BkB
>
k ‖, ‖

∑
k

B>k Bk‖} (15)

Then for all t > 0

P{‖
∑
k

γkBk‖ ≥ t} ≤ (d1 + d2) · e−t
2/2c21 (16)

Lemma 4 comes from [2]. Now, Lemma 2 and 4 directly imply
Lemma 5. With failure probability at most δ + n

ep ,

(ΘX)>Θε/nsubs ≤ σ
√
log(

nsubs + 1

δ
) · 32

p

nsubs
(17)

Proof. Let Bk be the kth column of (ΘX)>. Lemma 2 and Remark 2 imply maxk ‖Bk/
√
n‖ ≤

4
√

p
n with failure probability at most n

ep . In this case,

‖
∑
k

BkB
>
k ‖ ≤

∑
k

‖BkB
>
k ‖ ≤

∑
k

‖Bk‖‖B>k ‖ ≤ 16pnsubs

Same bound holds for ‖
∑
k B>k Bk‖. On the other hand, Θε is a nsubs × 1 vector the elements of

which are nsubs i.i.d centered normal random variables with variance σ. Applying Lemma 4 with
c21 = 16pnsubs, we can bound the failure probability and using the same technique as Lemma 1
proves this Lemma.

We also need a lemma from matrix perturbation theory for the accuracy of the matrix inverse, which
is given in Theorem 2.5 in [3]

Lemma 6. Let ΣX be a non-singular p × p matrix and Σ̂X = ΣX + ∆1. Let ‖.‖ be the matrix 2
norm. If Σ̂X is non-singular, then

‖Σ̂−1
X − Σ−1

X ‖
‖Σ̂−1

X ‖
≤ ‖Σ−1

X ∆1‖ (18)
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Remark 3. In our model, ΣX = X>X/n = Ip. When ‖∆1‖ ≤ 1
2 , ‖Σ̂−1

X ‖ ≤ 2. So we have, when
ΣX = Ip and ‖∆1‖ are small enough,

‖Σ̂−1
X − Σ−1

X ‖ ≤ C‖∆1‖ (19)

for some constant C.

Lemmas 1 and 6 directly imply:

Corollary 2. Let (XΘ>ΘX/nsubs)
−1 be the estimator of the inverse of covariance, Ip =

(X>X/n)−1. With failure probability at most n
ep + δ

‖(XΘ>XΘ/l)−1 − Ip‖ ≤ C
√

log(
2p

δ
)

p

nsubs

for some constant C if nsubs is big enough.

2 Proof for The Fixed Design Setting

For fixed design setting, let Θ = RHD ∈ nsubs × n be the SRHT where R is the row sampling
matrix, H is the normalized Hadamard matrix and D is the diagonal random sign matrix. Let
r = nsubs

n denote the subsampling ratio. Define Θrem = RremHD where Rrem samples those
nrem = n−nsubs rows that are not included by R. For notational convenience let Θall = (Θ; Θrem)
which can be viewed as a n× n SRHT matrix. Our three sampling estimators are then:

Algorithm 1 Full Subsampling (FS)
1. ŵFS = ((ΘX)>ΘX)−1(ΘX)>ΘY

Algorithm 2 Covariance Subsampling (CovS)

1. ŵCovS = nsubs
n ((ΘX)>ΘX)−1X>Y

Algorithm 3 Uluru
1. ŵFS = ((ΘX)>ΘX)−1(ΘX)>ΘY

2. Rrem = ΘremY −ΘremXŵFS

3. ŵcorrect = nsubs
nrem

· ((ΘX)>ΘX)−1(ΘremX)>Rrem,

4. ŵUluru = ŵFS + ŵcorrect is our final estimator.

Now let’s prove bounds for the fixed design setting:

2.1 Proof of Theorem 1

Proof.

‖ŵFS − w‖ = ‖(XΘ>ΘX)−1XΘ>Θ>Y − w‖
= ‖(XΘ>ΘX)−1XΘ>ΘXw − w + (XΘ>ΘX)−1XΘ>Θε‖
≤ ‖(XΘ>ΘX)−1‖‖XΘ>Θε‖

With failure probability n
ep + δ the inequality in Corollary 2 holds, ‖(XΘ>ΘX/nsubs)

−1‖ is
bounded by some constant. On the other hand, by Lemma 5 ‖XΘ>Θε/nsubs‖ is bounded by
σ
√
log(nr + 1/δ) · 32 p

nr with failure probability n
ep + δ. Applying union bounds finishes the

proof.
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2.2 Proof for Theorem 2

Proof. Let ∆2 = I− (X>Θ>ΘX/nsubs)
−1 and ∆3 = I− (X>Θ>remΘremX/(nrem))

‖w − ŵCovS‖ = ‖nsubs
n

(X>Θ>ΘX)−1X>Y − w‖

= ‖nsubs
n

((X>Θ>ΘX)−1(X>Θ>,X>Θ>rem)((ΘXw; ΘremXw) + Θallε)− w‖

= ‖nsubs
n

(X>Θ>ΘX)−1(X>Θ>ΘXw) +
nsubs
n

(X>Θ>ΘX)−1(X>Θ>remΘremXw)

+
nsubs
n

(X>Θ>ΘX)−1X>Θ>allΘallε− w‖

≤ (1− r)‖(X>Θ>ΘX/nsubs)
−1(X>Θ>remΘremXw/nrem)− w‖

+‖(X>Θ>ΘX/nsubs)
−1XΘ>allΘallε/n‖

≤ (1− r)‖(I−∆2)(I−∆3)− I‖‖w‖+ ‖(X>Θ>ΘX/nsubs)
−1X>Θ>allΘallε/n‖

≤ (1− r)(‖∆2‖+ ‖∆3‖+ ‖∆2∆3‖)‖w‖+ ‖(X>Θ>ΘX/nsubs)
−1‖‖X>Θ>allΘallε/n‖

By Corollary 2, ∆2 ≤ C
√

log( 2p
δ ) p

nr with failure probability n
ep + δ. By Lemma 1,

∆3 ≤ C
√

log( 2p
δ ) p

n(1−r) with failure probability n
ep + δ. By Lemma 5, ‖X>Θ>allΘallε/n‖ ≤

σ
√

log(n+ 1/δ).32 pn with failure probability n
ep + δ. Also we can conclude that

‖(X>Θ>ΘX/nsubs)
−1‖ is bounded by some constant when the bound in corollary 2 holds. Ig-

nore the ‖∆2∆3‖ term since it’s ignorable compared with other terms. Using the union bound we
can prove Theorem 2.

2.3 Proof for Theorem 3

Proof.

‖ŵUluru − w‖ = ‖(X>Θ>ΘX)−1X>Θ>ΘY + ŵcorrect − w‖

= ‖ŵFS +

(
r

1− r
(X>Θ>ΘX)−1X>Θ>rem(ΘremXw + Θremε−ΘremXŵFS)

)
− w‖

≤ ‖ŵFS +

(
r

1− r
(X>Θ>ΘX)−1(X>Θ>remΘremX)(w − ŵFS)

)
− w‖

+ ‖ r

1− r
(X>Θ>ΘX)−1X>Θ>remΘremε‖

= ‖ŵFS − w +
(
(X>Θ>ΘX/nsubs)

−1(X>Θ>remΘremX/nrem)(w − ŵFS)
)
‖

+ ‖(X>Θ>ΘX/nsubs)
−1X>Θ>remΘremε/nrem‖

= ‖ŵFS − w‖‖I− (I−∆2)(I−∆3)‖+ ‖(X>Θ>ΘX/nsubs)
−1X>Θ>remΘ>remε/nrem‖

≤ ‖ŵFS − w‖(‖∆2‖+ ‖∆3‖+ ‖∆2∆3‖)
+ ‖(X>Θ>ΘX)−1‖‖X>Θ>remΘremε/nrem‖

By Theorem 1, ‖ŵFS − w‖ ≤ Cσ
√

ln(nr + 1/δ)32 p
nr with failure probability 2 n

ep + 2δ. By

Corollary 2, ∆2 ≤ C
√

log( 2p
δ ) p

nr with failure probability n
ep + δ. By Lemma 3, ∆3 ≤

C
√

log( 2p
δ ) p

n(1−r) with failure probability n
ep + δ. By lemma 5, ‖X>Θ>remΘremε/(n(1− r))‖ ≤

σ
√

log(n(1− r) + 1/δ) · 32 p
n(1−r) with failure probability n

ep + δ. Also we can conclude that

‖(X>Θ>ΘX/nsubs)
−1‖ is bounded by some constant when the bound in Corollary 2 holds. Ap-

plying union bound proves Theorem 3.
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3 Subgaussian Random Design Setting

In this section we proof bounds for three algorithm in the subgaussian random design setting.

The first lemma is a straightforward generalization of Equation 5.25 in [4] and provides error bounds
for the empirical estimator of ΣXX .

Lemma 7. Let Σ̂subs ≡ (X>subsXsubs)/nsubs be the estimator of covariance matrix ΣXX with sample
size nsubs. Then, with probability at least 1− δ,

‖Σ̂subs − ΣXX‖ ≤ C1

√
p

nsubs
+ C2

√
ln(2/δ)
√
nsubs

if nsubs � ln(2/δ) and nsubs � p.
Assume ln(2/δ) < p, the above bound can be simplified to

‖(X>subsXsubs)/nsubs − ΣXX‖ ≤ C
√

p

nsubs
. (20)

The next lemma gives a concentration bound on the centered sub-exponential variables, which is a
slightly modified version of corollary 5.17 in [4].
Lemma 8. Let z1...zn be i.i.d. draws from centered sub-exponential random variables. For ε ≤ K,

P (
|
∑n
i=1 zi|
n

> ε) ≤ 2 exp{−cε
2n

K2
} (21)

In other words, with probability at least 1− δ,

|
∑n
i=1 zi|
n

≤ K
√

ln(2/δ)

cn
(22)

if n ≥ ln(2/δ)
c .

Here c is an absolute constant and K is the sub-exponential norm of the random variable zi. If the
variables zi is scaled by a constant λ, then the sub-exponential norm is also scaled by λ.

Lemma 8 directly implies the following:
Corollary 3. Let Xsubs ∈ nsubs × p be nsubs i.i.d. draws from a p dimensional subgaussian random
vector and let εsubs ∈ nsubs × 1 be i.i.d. draws from a centered normal with standard deviation σ.
Then, for big enough nsubs, with probability 1− δ,

‖X>subsεsubs/nsubs‖ ≤ Cσ

√
p · ln(2p/δ)

nsubs
(23)

Proof. Every element in the p dimensional vector X>subsεsubs/nsubs can be viewed as the mean of
nsubs i.i.d. centered sub-exponential variable with sub-exponential norm proportional to σ. Now,
by applying Lemma to every element of X>subsεsubs/nsubs and using the union bound, the corollary
follows.

Similar as corollary 2 for the fixed design setting, Lemmas 6 and 7 directly imply:

Corollary 4. Let Σ̂−1
subs = (X>subsXsubs/nsubs)

−1 be the estimator of the inverse of covariance of
X,i.e. Σ−1

XX . Then, with probability 1− δ

‖Σ̂−1
subs − Σ−1

XX‖ ≤ C
√

p

nsubs

for some constant C if nsubs is big enough.

With lemmas and theorems listed above, we can prove the three theorems stated in the main text.
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3.1 Proof of Theorem 4

‖ŵFS − w0‖ = ‖(X>subsXsubs)
−1X>subsYsubs − w0‖

= ‖(X>subsXsubs)
−1X>subsXsubsw0 − w0 + (X>subsXsubs)

−1X>subsεsubs‖
≤ ‖(X>subsXsubs/nsubs)

−1‖ · ‖X>subsεsubs/nsubs‖

Since ‖(X>subsXsubs/nsubs)
−1‖ can be bounded by some constant, applying Corollary 3, and noting

that nsubs = nr, we can prove Theorem 4.

3.2 Proof of Theorem 5

Define Σ̂rem ≡ X>remXrem/nrem. First note that ŵCovS − w0 is1

= (1− r)(Σ̂−1
subsΣ̂rem − I)w0 + rΣ̂−1

subsX
>ε/n

Let Σ̂−1
subs = I + ∆4 and Σ̂rem = I + ∆5, So we have ŵCovS − w0 is

(1− r)(∆4 + ∆5 + ∆4∆5)w0 + rΣ̂−1
subsX

>ε/n

We can bound ‖ŵCovS − w0‖ by

≤ (1− r)(‖∆4‖+ ‖∆5‖+ ‖∆4∆5‖)‖w0‖
+r‖Σ̂−1

subs‖‖X
>ε/n‖

Bounding ∆4 with Corollary 4, bounding ∆5 with Lemma 7 and bounding ‖X>ε/n‖ with corollary
3, and using the union bound we can prove Theorem 5.

3.3 Proof of Theorem 6

‖ŵUluru − w0‖ = ‖(X>subsXsubs)
−1X>subsYsubs + θŵcorrect − w0‖

= ‖ŵFS + θ
r

1− r
(X>subsXsubs)

−1X>rem(Xremw0 + ε3 −XremŵFS)− w0‖

≤ ‖ŵFS + θ
r

1− r
(X>subsXsubs)

−1X>remXrem(w0 − ŵFS)− w0‖+ θ‖(X>subsXsubs/nsubs)
−1X>remεrem/nrem‖

= ‖ŵFS − w0 + θ(X>subsXsubs/nsubs)
−1X>remXrem/nrem(w0 − ŵFS)‖+ θ‖(X>subsXsubs/nsubs)

−1X>remεrem/nrem‖
= ‖ŵFS − w0‖‖I − θ(I −∆4)(I −∆5)‖+ θ‖(X>subsXsubs/nsubs)

−1X>remεrem/nrem‖
≤ ‖ŵFS − w0‖(‖I − θI‖+ θ‖∆4‖+ θ‖∆5)‖+ θ‖∆4∆5‖) + θ‖(X>subsXsubs/nsubs)

−1‖‖X>remεrem/nrem‖
Bounding ‖ŵFS −w0‖ with Theorem 1, bounding ∆4 with Corollary 4, bounding ∆5 with Lemma
7, bounding ‖X>remεrem/nrem‖ with Corollary 3, and using union bound we can prove Theorem 6.

4 Coordinate Free vs. Coordinate Based Approaches

Our algorithms presented in this paper are coordinate free. Another family of algorithms that are
popular are coordinate based.

1Follows by

w0 − ŵCovS = r(X>subsXsubs)
−1X>Y − w0

= r(X>subsXsubs)
−1(X>subs,X

>
rem)((Xsubsw0;Xremw0) + ε) − w0

= r(X>subsXsubs)
−1(X>subsXsubsw0) + r(X>subsXsubs)

−1(X>remXremw0) + r(X>subsXsubs)
−1X>ε− w0

= r(X>subsXsubs)
−1(X>remXremw0) + r(X>subsXsubs)

−1X>ε− (1 − r)w0

= (1 − r)Σ̂−1
subsΣ̂remw0 − (1 − r)w0 + rΣ̂−1

subsX
>ε/n

= (1 − r)(Σ̂−1
subsΣ̂rem − I)w0 + rΣ̂−1

subsX
>ε/n
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Coordinate Based Approaches: Recently, [5] have shown that stochastic dual coordinate ascent
(SDCA) methods enjoy stronger theoretical guarantees for large scale machine learning compared
to stochastic gradient descent (SGD). They consider the regularized loss minimization problem of
the form:

P (w) =
1

n

[
n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2

]
.

In the experiments we report below, we use the squared loss, i.e., φi(a) = (a− yi)2. Their method
works in the dual space and makes a few passes over the data (a few “epochs”). In each epoch,
they either randomly pick an instance (called SDCA in their paper) or permute the set of instances
(called SDCA-PERM). They then perform a simple additive update to the dual parameters followed
by averaging. The number of epochs (N) and the regularization constant (λ) are tunable constants.
In addition to the better convergence bounds, another attractive feature of their approach is that there
is a definitive stopping criteria based on duality gap (εD): i.e., one should stop when the duality gap
reaches a certain pre-chosen value. The run time of SDCA based approaches can be seen to be
O(n p N), where N is the number of epochs.

A main difference between their gradient based approach and our subsampling approach is that
their approach depends on the underlying coordinates of the system. Below we compare against
both their random and permutation based SDCA variants, which we call (SDCA-r) and (SDCA-p)
respectively.

5 Extra Experiments

Here we present some additional experiments benchmarking the performance of our algorithms
against stochastic dual coordinate ascent (SDCA) methods.

We generated synthetic data from two models, further varying the amount of signal carried by each
model.

• Low Rank Data: Here, we put the signal in the direction of the major principle compo-
nents.

• Coordinate-based Data: This setting is designed to make coordinate based systems per-
form poorly. The features are divided in pairs where each feature is very highly negatively
correlated with its pair, but the sum of the two features predicts Y well. I.e. each pair of
features is xi = εi + γδj , xi+1 = εi − γδj with the δ’s being predictive of Y and the ε’s
being much larger–but independent of Y . Thus, if you look at a simple regression (regres-
sion with only one feature), neither feature in the pair will look promising, but if you look
at both, they are highly significant. An alternative way to think of this model is to that it
has p/2 large singular values which carry no signal and p/2 small singular values whose
directions carry all the signal.

The two settings were constructed such that SDCA would perform very well on one of them (Low
Rank) and would perform poorly on the other one (Coordinate Based).

For the results presented below, we used p = 8 and n = 4, 096 and tried different values for the
signal present in the datasets [2,

√
n
p , np ]. For SDCA, we tried λ ∈ 0.01, 0.1 and 1, and chose the

value which gave minimum MSE/Risk.

5.1 Results

As can be seen from the plots, SDCA-p performs better than our algorithms in the Low-Rank setting,
especially when there was low signal. Otherwise our algorithms both in fixed as well as subgaussian
random design setting performed better than SDCA-p. SDCA-r gave a similar performance.
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Figure 1: Results for synthetic datasets (n=4096, p=8) in Low-Rank (top row) and Coordinate Based Data
(bottom row). The three columns in the top row have different amounts of signal, 2,

√
n
p

and n
p

respectively. In

all settings, we varied the amount of subsampling from 1.1 p to n in multiples of 2. Color scheme: + (Green)-
FS, + (Blue)-CovS, + (Red)-Uluru + (Black)-SDCA-p. The solid lines indicate no preconditioning (i.e.
random design) and dashed lines indicate fixed design with Randomized Hadamard preconditioning.

6 Error Measures and Rotations

The bounds presented in this paper are expressed in terms of the Mean Squared Error (or Risk) for
the `2 loss; i.e., EX‖X>w0 −X>ŵ‖2. Note that the expectation is w.r.t. unseen new observations
X and not the training samples.

Now,

EX‖X>w0 −X>ŵ‖2 = (w0 − ŵ)>EX(X>X)(w0 − ŵ)

= (w0 − ŵ)>ΣXX(w0 − ŵ) (24)

Therefore, when ΣXX is the identity matrix, EX‖X>w0 −X>ŵ‖2 = ‖w0 − ŵ‖2.

So, for mathematical convenience, when ΣXX is an arbitrary positive semi-definite matrix, we can
rotate the X matrix and w0 to make ΣXX identity.

Therefore, let:

wnew
0 = Σ

1/2
XXw0

Xnew = Σ
−1/2
XX X

Y = Xnewwnew
0 + ε

Since, all our three estimators are coordinate free, they have the property that transforming the
estimator by ŵnew = Σ

1/2
XXŵ will generate the exact same estimate as computing the estimator on

the transformed data. So, if we use the new transformed X, our error estimates are identical. Hence,
our error measure, Eq. 24, becomes ‖wnew

0 − ŵnew‖2.

In the new transformed model, Xnew has identity covariance. The above calculation indicates that
in order to bound the error measure (Eq. 24) for X with arbitrary covariance structure, one can
equivalently bound ‖w0 − ŵ‖2 when ΣXX = I.
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