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ABSTRACT
Ebooks on the Runestone platform contain instructional material
(text, images, videos, and a code visualizer/stepper) and a variety
of practice problem types (write code problems with unit tests,
multiple-choice questions, mixed-up code problems, etc.). User in-
teraction is timestamped and logged. This paper reports on analyses
comparing student interaction data to midterm scores for CSAwe-
some: a College Board endorsed ebook for the Advanced Placement
Computer Science A course. We also analyzed mixed-up code (Par-
sons) problem data in-depth since these are a newer type of practice.
Our analysis found that the percent correct on the midterm was
most negatively correlated with being in a larger class and most
positively correlated with the percent correct on other multiple-
choice questions. It was also positively correlated with several other
activities including the percent correct on Parsons problems, active
code, and the pretest. Interestingly, it was positively correlated with
the number of videos viewed, but negatively correlated with the
number of videos completed. Next, our analysis of adaptive mixed-
up code (Parsons) problems, where the student can ask for help
when stuck, found a positive correlation with the number of steps
a user completed before asking for help and a negative correlation
with the elapsed time before getting help. Looking closely at two
Parsons problems, we found that solving each problem more effi-
ciently, i.e., with fewer extra steps, correlated with higher midterm
scores. This work could help instructors identify and support strug-
gling students early in a semester and informs the redesign of the
instructor dashboard.
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1 INTRODUCTION
Research has shown that interactive ebooks have better learning
gains than static ebooks [20]. In addition, most students report
that the interactive features help them learn and want to use in-
teractive ebooks in future courses [18]. A 2013 working group
predicted that traditional CS textbooks would be replaced by inter-
active ebooks [17].

Runestone is an open-source interactive ebook platform that has
grown from serving one free ebook [18] in 2011 to over 30 free
ebooks for computer science and math in 2021. It supports several
languages, including Python, Java, C++, and SQL [12]. During the
2020-21 academic year, Runestone had 69,400 registered users and
served an average of over two million page views a week.

Runestone interactive ebooks log timestamped user interactions1.
For the analyses in this paper, we use the CSAwesome interactive
ebook [6]. CSAwesome has been endorsed by the College Board for
the Advanced Placement (AP) Computer Science A (CSA) course.
Advanced Placement courses are taken by secondary students for
college credit and/or placement. The AP CSA course is equivalent
to a first course for majors (CS1) at the college level and covers
object-oriented programming in Java. Our CSAwesome data is from
a random sample of custom courses because there is too much data
to dump it all into a log file. Instructors can create a custom course
from any of the free ebooks on Runestone and have their students
register for that custom course.

Ebooks provide rich interaction data that could be leveraged
to improve instruction [25]. We may be able to harness this data
to identify struggling students early in a course as well as their
conceptional gaps andmisconceptions. Our research questions were
1) what student interactions correlate with the midterm score, 2)
what mixed-up code (Parsons) problem interactions correlate with
the midterm score, and 3) is there a difference in results by class
size? To answer these questions, we performed regression analyses
at both the higher level based on the major types of activities and
at the lower level with a more in-depth analysis of Parsons problem
data. To our knowledge, no prior research has explored using log
file data from Parsons problems to detect struggling students.

2 RELATEDWORK
Our work draws on learning theories and research on detecting
struggling students, interactive ebooks, and Parsons problems.

1Researchers can request an anonymized logfile from Brad Miller, the founder of
Runestone.
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2.1 Learning Theories
The prevalent view of learning is that people construct new knowl-
edge based on what they already know and believe [1]. The ICAP
framework hypothesizes that active learning leads to greater learn-
ing gains than passive learning [2]. Specifically, it hypothesizes that
Interactive > Active > Constructive > Passive. The theory of the
Zone of Proximal Development (ZPD) hypothesizes that learning
is maximized when learners are challenged to do more than they
could alone, but can accomplish with help from a person or system
[21]. This implies that systems that adapt the difficulty of problems
based on the learner’s performance should improve learning out-
comes. The CSAwesome ebook was designed to provide both active
and adaptive learning [6, 7, 9, 13].

2.2 Detecting Stuggling Students
Costa et al. tried to detect struggling students in introductory pro-
gramming courses using educational data mining techniques such
as Naive Bayes classifiers, decision trees, multilayer neural net-
works, and support vector machines [3]. They were able to predict
struggling students with 79% accuracy after 25% completion of an
on-campus course from weekly activities and exams; however, they
do not describe what the weekly activities were, and they only used
data from one institution [3]. Watson et al. compared compilation
behavior on weekly lab programming assignments in a Java course
with other standard measures such as prior programming expe-
rience, self-efficacy, and lecture attendance [23]. They found that
several measures of compilation behavior more strongly correlated
with the final mark in the course than most of these, except for
self-efficacy. Their research implies that weaker students had more
trouble fixing compile-time errors than stronger students. However,
they did not include any other data, such as the results from unit
tests and their data was only from one course. Another problem is
that compile-time data is not always available to instructors. Inter-
active ebooks provide a much finer-grained look at student progress
since they include several types of practice: multiple-choice ques-
tions, write code problems, and mixed-up code (Parsons) problems
and students typically work in ebooks several times a week.

2.3 Interactive Ebooks
In this paper, we are interested in studying the relationship between
students’ interaction in the ebook and their pretest and midterm
scores. In a related study, Pollari-Malmi et al. [20] found an increase
in use, motivation, and learning gains from the use of an interactive
ebook versus an equivalent static ebook, which is consistent with
the ICAP hypothesis. Ericson et al. [8] found that teachers who
used more of the interactive features in an ebook had higher gains
in confidence and higher scores on the final posttest, which is also
consistent with ICAP.

2.4 Parsons Problems
Several researchers [4, 5, 11, 19, 22, 24, 26] have been exploring
mixed-up code (Parsons) problems as both a lower cognitive load
form of practice compared to writing code from scratch and as a
summative assessment. In Parsons problems, learners must place
mixed-up blocks of code in the correct order. They may also have to

indent the blocks correctly. Parsons problems can also have distrac-
tors, which are code blocks that are not needed in a correct solution.
Figure 1 contains distractors shown paired with the correct code
block. Helminen et al. [16] visualized students’ problem-solving
process on Parsons problems using a graphical representation. They
detected several different approaches to solving Parsons problems,
including top-down, control structures first, and trial and error.
Some learners got stuck in circular loops and repeated the same
incorrect solution. Ericson et al. [10] found that more learners at-
tempted Parsons problems than nearby multiple-choice questions
in an interactive ebook. Du et al. [5] conducted a review of recent
studies on Parsons problems.

There are two types of adaptation for Parsons problems on Rune-
stone [7, 9]. In intra-problem adaptation, the problem can be dy-
namically made easier by removing a distractor or combining two
blocks into one. Intra-problem adaptation is triggered by clicking
a "Help" button. In inter-problem adaptation, the difficulty of the
next problem is automatically modified based on the learner’s per-
formance on the last problem. The problem can be made easier
by showing distractors paired with the correct code blocks or by
removing distractors. It can be made more difficult by using all
distractors and randomly mixing the distractor blocks in with the
correct code blocks. Learners are nearly twice as likely to correctly
solve adaptive Parsons problems than non-adaptive ones and report
that solving Parsons problems helps them learn to fix and write
code [7, 15]. A randomized controlled study provided evidence that
solving adaptive Parsons problems takes significantly less time than
writing the equivalent code and with similar learning gains from
pretest to posttest [9].

3 DATASET
The log file used in our analysis comes from the CSAwesome in-
teractive ebook on the open-source Runestone platform. This book
was revised by Beryl Hoffman of Elms College and the Mobile
CSP project in 2019 for the AP CS A course [6]. The log includes
page views, video interaction, use of a program visualizer/stepper
(CodeLens), and the results from interactive practice problems:
multiple-choice, write code (activecode), and mixed-up code (Par-
sons) problems.

An activecode is a traditional programming exercise where stu-
dents write/edit/run code in the ebook. Many activecode exercises
have unit tests that students can use to verify that their code is
correct. Students can also use a slider to view previous versions
of the code. The “Show CodeLens” button on the activecode will
display a program visualizer (CodeLens), allowing students to step
through their code line by line and visualize the variables. It is a
version of Guo’s Python Tutor [14]. A Parsons problem provides
mixed-up code blocks that the learner must place in the correct
order [19] as shown in Figure 1. The Parsons problems in this ebook
were adaptive. While some adaptive systems use selection adapta-
tion in which the next problem is selected from a set of possible
problems based on the learner’s performance, this system modifies
the difficulty of the current or next problem in the ebook based on
the learner’s performance.

We analyzed five categories of log file entries: page views, video
(play, pause, and completion), activecode interaction (run, edit,
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Figure 1: Example Parsons Problem with Paired Distractors

slide, and unit test), Parsons problem block moves and answers, and
answers to multiple-choice questions. Overall, the log file contained
data from 1,893 students in 57 custom classes. Most of these were
high school classes, but some of them were college classes. This
paper analyzed a subset of the log data from 505 students who took
both the pretest and midterm in their course. The pretest and the
midterm are both in the ebook and each has 20 multiple-choice
questions. The summary statistics of the data are shown in Table 1.
Over 37% of the log file activities were interaction with activecode.
The AP CSA exam includes 40 multiple-choice questions and four
free-response questions where the student must write Java code to
solve a problem. The ebook is broken into ten content-based units
and five practice units. At the end of each content-based unit, there
are at least ten multiple-choice questions, mixed-up code (Parsons)
problems, and write code problems with unit tests [6]. There are
also a variety of practice problems throughout the unit subchapters.

We were interested in the effect of class size on students’ perfor-
mance. For this analysis, we divided the students into two groups:
classes with less than 30 students, which is the typical maximum
class size in high school, and classeswithmore than 30 students—224
students were in large classes, and 281 were in small classes.

4 METHODS AND RESULTS
This section analyzes the correlations between student interactions
and the percent correct on the midterm. Figure 2 shows that the
percentage correct on the midterm has a positive correlation with
the percentage correct for each activity. The percent correct for each
activity was calculated by the number of correct answers divided by
the number of attempts for each type of problem. Multiple-choice
problems have the highest correlation with the midterm score. This

Event Type Count Percentage
activecode 1,020,735 37.66%
page view 651,136 24.02%
Parsons move and answer 524,206 19.34%
multiple choice answer 261,321 9.64%
video 83,892 3.09%
other 169,363 6.25%
Total 2,710,653 100%
Table 1: Various types of events in our dataset.

could be because themidterm is a set of 20multiple choice questions.
There were also positive correlations with the percent correct on
Parsons problems, active code, and the pretest. On the other hand,
there was a negative correlation between the midterm score and the
number of other activities (i.e., the percent of completed videos).

4.1 Regression analysis of student activities
Next, we employ a linear regression model to this data with the
percentage of correct answers on the midterm exam as the depen-
dent variable. The counts for each type of student activity were
used as independent variables. Since the activity variables have a
skewed distribution, we log-transformed them as 𝑥 → 𝑙𝑜𝑔(𝑥 + 1)
and standardized them. Also, we add the class size as a dummy
variable in our model to control for the variation in test scores
based on the class size. The regression results are shown in Table 2.

The percent correct on the midterm was negatively correlated
with being in a larger class, perhaps because there is less one-on-
one interaction with the instructor and, as a result, lower learning
outcomes. Interestingly, midterm results were also negatively cor-
related with the number of interactions with the CodeLens and
the number of videos completed. This could potentially be because
both of these activities were more likely to be used by struggling
students who had lower midterm scores.

The midterm results were positively correlated with the percent
correct on the pretest, percentage correct on other multiple-choice
questions, the number of page views, and the number of videos
played. Intriguingly, the midterm score is positively correlated with
the number of videos played but negatively correlated with the
number of videos completed. This suggests that stronger students
might watch a video till they find what they need and then quit.

4.2 Analyzing Parsons Problem Data
In this section, we conduct an in-depth analysis of student interac-
tion data on Parsons problems. As described earlier, these Parsons
problems used both intra-problem and inter-problem adaptation. In
intra-problem adaptation, if a student submits at least three incor-
rect solutions, they are notified that they can use a “Help” button
to make the problem easier. Each time the student clicks the “Help”
button, the ebook will remove a distractor block from the solution
or combine two blocks into one, hence providing an implicit hint.
This help may be why the percentage of correct Parsons problems
was not statistically significant compared to the midterm score.

We pre-processed the log data to gather detailed information on
the Parsons interactions. As can be seen from Figure 4, students
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Figure 2: Correlation between percent correct on the
midterm and the different activities.

Figure 3: Results for pretest andmidterm scores by class size.

Variable Coef. (p-value)
Large Class (or not) -0.362*** (0.00)
Percentage correct for pretest 0.1045*** (0.009)
Percentage correct for multiple choice 0.5366*** (0.000)
Number of activecode interactions 0.0901* (0.09)
Number of CodeLens interactions -0.1403*** (0.002)
Number of page views 0.0931** (0.03)
Number of videos played 0.158*** (0.005)
Number of videos completed -0.08** (0.03)
N 417
R2 0.416
***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1

Table 2: Regression results: The outcome variable is the
midterm score and the independent variables are the stu-
dent activities.

have to move from a state where all the blocks are jumbled to the
state in which all the blocks are placed correctly. We define a step
as a block move by either the student or system. We count the
number of steps taken by the students and the number of failures

incurred until a student finds the correct ordering. We also count
the number of times a student got help (clicked the “Help” button)
and the number of steps and time until a student asked for help. To
tease apart the effect of “getting help,” we add an interaction term
with the “help flag” in our regression.

The regression result is shown in Table 3. As can be seen from
the result, being in a large class is negatively related to the midterm
score, as we found in our previous analysis. We also found that the
number of steps before a student got help from the software was
positively correlated with the midterm test results. Perhaps stronger
student learners could figure out more of the problem before asking
for help. On the other hand, the time to get support was negatively
associated with the test score. This implies that students who took
too long to get support scored poorly on the midterm. This has im-
plications for providing help. Currently the help is student initiated,
but this result suggests testing other options. In addition, students
who received more support, i.e., received more help, did not score
as well on the midterm. It is perhaps not surprising that weaker
students take longer or need more help, but these indicators could
be used to identify struggling students.

Figure 4: The process of solving a Parsons problem

Variable Coef. (p-value)
Large Class (or not) -0.0862*** (0.000)

Number of correct Parsons problems 0.0797* (0.09)
Number of incorrect submissions -0.0136*** (0.000)
Number of times help is used -0.0279** (0.03)

Number of steps before getting help 0.413* (0.07)
Elapsed time before getting help -0.3472* (0.08)

N 402
R2 0.141

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 3: Regression analysis of Parsons problem interac-
tion data. The dependent variable is the midterm score and
the independent variables are student activities on Parsons
problems.
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4.3 Deeper analysis of two specific Parsons
Problems

Since the percent correct on Parsons problems positively correlates
with the percent correct on the midterm, we further investigated
two specific Parsons problems. In one problem in Unit two learners
drew a sideways L with a turtle as shown in Figure 1. We analyzed
the number of block moves and the time elapsed before the learner
found the correct answer for each problem. We counted the number
of steps it took from the initial state to the correct order, as discussed
earlier. We define “extra steps” as the number of code-block moves
beyond the required number of moves to a correct answer. For
example, if a solution can be reached in just ten steps, and a student
took twelve steps, this would be two extra steps. We also measured
the amount of time it took students to reach the correct solution.
Figure 5 shows a correlation between the number of extra steps to
solve this Parsons problems versus the time to a correct solution
for students in large and small classes.

Figure 6 compares the extra steps taken to solve Parsons prob-
lems by groups: 1) small class and less than median midterm scores,
2) small class and greater than median midterm scores, 3) large class
and less than media midterm scores, and 4) large class and greater
than median midterm scores. As can be seen, there is a significant
relationship between students with higher than median midterm
scores and the number of extra steps taken (t-statistic 5.096, p <
0.001). On the other hand, there is no relationship between class
size and the number of extra steps taken (t-statistic 1.16, p > 0.1).

Figure 7 shows the result comparing the time by class size and
midterm test score. Unlike the number of “extra steps,” there is no
significant association between students with higher than median
midterm scores and the time taken by the learners (t-statistic 3.7, p
< 0.001). Also, there is no relationship between class size and time
(t-statistic 1.39, p > 0.1).

From this analysis, it appears that students who took fewer
extra steps while solving this Parsons problem have better midterm
scores. A similar trend is also observed in another problem from
Unit 4, as shown in Figure 8.

Figure 5: Relationship between extra steps and time

Figure 6: Comparison of number of extra steps while solv-
ing Parsons problems by groups: 1) small class andmidterm
score less than median, 2) small class and midterm score
greater than median, 3) large class and midterm score less
than median, and 4) large class and midterm score greater
than median

Figure 7: Comparison of Parsons problem completion time
by groups: 1) small class and midterm score less than me-
dian, 2) small class and midterm score greater than median,
3) large class and midterm score less than median, and 4)
large class and midterm score greater than median

4.4 Comparing the Percent Correct on Parsons
and Write Code to the Midterm Scores by
Groups

We compared the four groups 1) small class and midterm score less
than the median, 2) small class and midterm score greater than the
median, 3) large class andmidterm score less than themedian, and 4)
large class and midterm score great then the median with respect to
the percent correct for both Parsons problems, as shown in Figure 9,
and write code (activecode) problems, as shown in Figure 10. There
was a significant difference between groups that scored below and
above the median for the percent correct on activecode problems (t
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Figure 8: Comparison of the number of extra steps with
midterm score and class size for a problem in Unit 4 by
group.

statistic -6.5 p=2.3e-10) but not for Parsons problems (t statistic -2.19
p= 0.03). This could be because the adaptation to Parsons problems
makes it easier for weaker students to solve the problem correctly.

Figure 9: Comparison of percent correct on Parsons prob-
lems by group.

5 DISCUSSION
We performed several quantitative analyses on the clickstream data
from the CSAwesome ebook to study the relationship between
students’ activities in the ebook and their midterm scores. In our
regression analysis, the variable with the largest positive effect size
was the percentage correct on other multiple-choice questions. On
the other hand, the variable with the strongest negative correlation
was the class size. It is not entirely surprising that the percent
correct on other multiple-choice questions strongly correlates with
the percent correct on the midterm or that students tend to do
worse in larger classes than smaller ones. Several other positive
and negative correlates are more surprising, such as the negative

Figure 10: Comparison of percent correct on activecode prob-
lems by group.

correlation with the number of videos completed, but the positive
correlation with the number of videos played.

We also analyzed the learner interaction patterns on the Parsons
problems since these are a newer type of practice. Specifically,
we examined the correlation between the midterm score and the
number of steps taken, time taken, and the frequency of “help.”
The results show a positive association between the number of
correctly completed Parsons problems and the learners’ midterm
scores. However, there was a negative association between the
midterm scores and the time taken by the student to get help on a
Parsons problem. A closer investigation of two Parsons problems
showed a negative correlation between the number of extra steps,
time to solve that Parsons problem, and the midterm score.

6 LIMITATIONS
We only analyzed the data from one interactive ebook using the
Java programming language. These results may not generalize to
other ebooks or languages. We also only analyzed two Parsons
problems in-depth. More work should be done to determine if the
number of extra steps is consistently correlated with performance
on the midterm. Also, the student data was from a random selection
of custom courses on the Runestone platform. We did not have any
additional information about these courses, such as which items
were assigned, final grades, or student demographics.

7 CONCLUSION
In this paper, wemined the student interaction logs from the CSAwe-
some ebook to quantify the ability of such data to predict the stu-
dents’ educational outcomes (midterm scores). Our analyses uncov-
ered key indicators that could potentially be used for the early iden-
tification of struggling students in a course. Such predictors could
be used to design interventions to improve the learning outcomes
of students. These correlates of students’ midterm performance can
also be used to enhance an instructor dashboard.
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