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1. Proof of Theorem 1

The key to the proof is that CCA can be understood
using the same machinery as is used for analyzing lin-
ear regression. The equivalent regression problem is
that we want to recover the word type of length v
given its context. For a more in-depth discussion of
how CCA relates to regression, see (Glahn, 1968), for
example. Thus, consider the case of predicting a vector
y of length v (the word type) from a vector x (the con-
text, which is of dimension 2hv in the one step CCA
case and dimension 2k in the two step CCA). Consider
the linear model

y = xβ + ε

Note that, we are predicting only one dimension of our
v-dimensional vector y at a time.

We want to understand the variance of our prediction
of a word given the context. As is typical in regression,
we calculate a standard error for each coefficient in our
contexts, ≈ O( 1√

n
). For one step CCA (OSCCA), we

have X = [L R], and running a regression we will get
a prediction error on order of hv

n , but since we have v
such y’s we get a total prediction error on the order of
hv2

n .

For the two-step case (TSCCA) we have X =
[LΦL RΦR]. As mentioned earlier, note that now
we are working with about 2k predictors instead of
2hv predictors. If we knew the true ΦL and ΦR, and
thus the true subspace covered by our predictors, the
regression error would be on the order of kv

n (again,
since there are v entries in our vector y). Instead, we

have an estimation of ΦL and ΦR. If these were com-
puted on infinite amount of data, then we would be
arbitrarily close to the true subspace and we would be
done. However since they come from a sample, we are

using Φ̂L and Φ̂R which are approximation to the ideal
ΦL and ΦR. So our task is to understand the error
introduced by this sample approximation of the true
CCA. First, we develop some notation and concepts
found in (Stewart, 1990).

Consider two subspaces V and V̂ and the respective
matrices containing an orthonormal basis for these
subspaces V and V̂. Let γ1, γ2, . . . be the singular
values of the matrix V>V̂, then define

θi = cos−1 γi

and define the canonical angle matrix Θ =
diag(θ1, . . . , θk).

These values of Θ capture the effect of using estimated
singular vectors, V̂ to form an underlying subspace,
as compared to the true subspace formed by the true
singular vectors V stemming from infinite data. The
largest canonical angle captures the largest angle be-
tween any two vectors– one from the perturbed sub-
space and one from the true subspace. The second
largest canonical angle captures the second largest an-
gle between any two vectors given that they are or-
thogonal to the original two, and so on. In this proof
we will only make use of the largest canonical angle
to provide a loose upper bound on the error stemming
from the imperfect estimation of the true subspace.

Now, consider a matrix Â = A + E and take the thin
singular value decomposition of A and Â (and here
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we take the liberty of applying diag in a block matrix
sense)

A = [U1U2]diag(Λ1,Λ2)[V1V2]>

Â = [Û1Û2]diag(Λ̂1, Λ̂2)[V1V2]>

In our case we have that λi = 0 for all λi ∈ Λ2.

From (Stewart & guang Sun, 1990), we have that

max{|| sin Θ||2, || sin Ψ||2} ≤ c||E||2 (1)

for some constant c where here Θ is the matrix of
canonical angles formed from the subspaces of U and
Û, and Ψ is the matrix of canonical angles formed
between the subspaces of V and V̂. Note that since
Θ and Ψ are diagonal matrices the induced norms
|| · ||2 recover the largest canonical angle of each sub-
space, and hence we can simultaneously derive an up-
per bound for the largest canonical angle of either sub-
space.

We have now developed the machinery we need to an-
alyze the two step CCA.

Without loss of generality, assume that L>L =
R>R = I, then ultimately we are interested in projec-
tion onto the subspace spanned by B = [LU1 RV1].
Note that because of our assumption the projection
onto LU1 is LU1U>1 L> and similarly for RV1. Fur-
thermore, note from our assumptions that LU1 forms
an orthonormal basis for the space spanned by LU1

(since

(LU1)>(LU1) = U>1 L>LU1 = I

and similarly for LÛ1, RV1, and RV̂1).

Lastly, and critically, the singular values of U>1 L>LÛ1

are identical to those of U>1 Û1 (similarly for RV1

etc.) and so from above we have that the matrix of
canonical angles between the subspaces LU1 and LÛ1

are identical to Θ (the matrix of canonical angles be-
tween U1 and Û1), and likewise the matrix of canon-
ical angles between the subspaces RV1 and RV̂1 are
identical to Ψ (the matrix of canonical angles between
V1 and V̂1), and thus the maximal angle enjoys the
same bound derived above. If we can get a handle on
the spectral norm of E, which will come directly from
random matrix theory, then we can bound the largest
canonical angle of our two subspaces.

We know that E is a random matrix of i.i.d Gaussian
entries with variance 1

n , and that the largest singular
value of a matrix is the spectral norm of the matrix.
From random matrix theory we know that the square

of the spectral norm of E is O(
√
hv√
n

) (Rudelson & Ver-

shynin, 2010).

The strategy will be to divide the variance in the pre-
diction of y into two separate parts i.e. the variance
that comes from predicting using the incorrect sub-
space, and then the variance from regression (as stated
above) if we had the correct subspace.

Let X̂ = [LΦ̂L RΦ̂R] (the incorrect subspace) and
X = [LΦL RΦR] (the true version). To get a handle
on predicting with the incorrect subspace (we will con-
sider the subspaces LΦL and RΦR separately here,
but note that from (1) the angles between the sub-
spaces and their respective perturbed subspaces are
bounded by a common bound) we note that, for the
regression of Y on X we have

β|X̂ =
Cov(Y, X̂)

Var(X̂)

and

β|X =
Cov(Y,X)

Var(X)

and

Cov(Y,X) = Cov(Y, X̂)

so trivially

β|X̂ = β|X ∗ Var(X)

VarX̂

= β|X ∗ Var(X)

Var(X) + Var(X− X̂)

Let ŷ be the the estimate of y from the true subspace,
and ˆ̂y be the estimate from the perturbed subspace.
For the first part of our proof, bounding the error that
comes from predicting with the incorrect subspace, we
want to bound E(ŷ − ˆ̂y)2.

We have

E
[
ŷ − ˆ̂y

]2
= E

[
β|X ∗ x− β|X̂ ∗ x

]2
= E

[
(β|X− β|X̂) ∗ x

]2
= E

[(
β|X− β|X Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
= E

[
β|X

(
1− Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
= E

[
β|X ∗ x

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2

= E

[
ŷ ∗

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2
(2)
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Because we are working with a ratio of variances in-
stead of actual variances, then without loss of gener-
ality we can set Var(X̂) = 1 for all predictors.

Now, we don’t really care what the exact ‘true’ X’s are
(formed with the true singular vectors), because we
only care about predicting y and not actually recover-
ing the true β’s associated with our SVD. This means
we do not suffer from the usual constraints imposed
on the erratic behavior of singular vectors. Usually
one must handle this kind of error with respect to the
entire subspace since singular vectors are highly unsta-
ble. In our case, however, we are free to compare to
any ‘true’ vectors we like from the correct subspace, as
long as they span the entire true subspace (and noth-
ing more).

We will define a theoretical set of predictors to com-
pare with, then. We are doing this to obtain an upper
bound for the total possible variance of Var(x− x̂) for
any acceptable set of x’s in the true underlying sub-
space (where we take acceptable to mean that the x’s
span the true subspace and nothing more).

We handle each subspace LÛ1 and RV̂1 separately.
The construction is to take our first vector and ‘choose’
a vector from the true subspace that lies such that the
angle between the two vectors is the maximal canonical
angle between the true and perturbed subspaces.

We proceed to our second predictor and choose a vec-
tor from the true subspace such the second ‘true’ pre-
dictor is orthogonal to the first. Note that the angle
between our second observed x̂ and the second chosen
x is at most the maximal canonical angle by assump-
tion. Again, because we don’t care about the β’s asso-
ciated with our true singular vectors, but only about
prediction quality of our perturbed subspace, we need
not be worried that our ‘chosen’ vectors might not be
the true singular vectors. We continue in this manner
until we have expired all of our predictors from both
sets of spaces.

We know from above that the sine of the maximal
angle of of both sets of subspaces is O

(√
hv√
n

)
and so

we have that the maximal variation

Var(X− X̂)

Var(X̂)
∼ O

(√
hv√
n

)

and so from 2 we have

E(ŷ − ˆ̂y)2 = E

[
ŷ ∗O

(√
hv√
n

)]2
≈ O

(
hv

n
∗ 1

v

)
= O

(
h

n

)

We have v of these to predict, so we have a total error
attributable to subspace estimation on the order of hv

n .
Adding regression error as we did earlier (which is on

the order of kv
n ), we get a total error of (h+k)v

n . We
recall that the error from the one step CCA (OSCCA)

is on the order of hv2

n which yields an error ratio of
h+k
hv .
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